Solveeit Logo

Question

Question: The rate constant for an isomerisation reaction is \(4.5 \times {10^{ - 3}}\) /min. If the initial c...

The rate constant for an isomerisation reaction is 4.5×1034.5 \times {10^{ - 3}} /min. If the initial concentration of A is 1M, What will be the rate of reaction after 1 hour?
A. 3.44×103molL1min13.44 \times {10^{ - 3}}mol{L^{ - 1}}{\min ^{ - 1}}
B. 3.44×1033.44 \times {10^3} molL1min1mol{L^{ - 1}}{\min ^{ - 1}}
C. 1.86×1031.86 \times {10^{ - 3}} molL1min1mol{L^{ - 1}}{\min ^{ - 1}}
D. 1.86×1031.86 \times {10^3} molL1min1mol{L^{ - 1}}{\min ^{ - 1}}

Explanation

Solution

The rate of the reaction depends on the concentrations of one or more than one reactants.

Complete step by step solution: the reaction is a first order reaction as it is an isomerisation reaction and its unit of rate constant is per min. Order of a reaction may be defined as the sum of powers or exponents to which the concentration terms are raised in the rate law expression.
Unit of rate constant=molL1(time)1(moleL1)n\dfrac{{mol{L^{ - 1}}{{(time)}^{ - 1}}}}{{{{(mole{L^{ - 1}})}^n}}}
Where n is the order of reaction. The differential rate expression for the first order reaction is
Rate=r=\-d[A]d[t]=k[A] \-d[A][A]=kdt d[A][A]=kdt  \- \dfrac{{d[A]}}{{d[t]}} = k[A] \\\ \- \dfrac{{d[A]}}{{[A]}} = kdt \\\ \int { - \dfrac{{d[A]}}{{[A]}} = k\int {dt} } \\\
\-ln[A]t[A]0=kt kt=2.303log[A][At]  \- \ln \dfrac{{{{[A]}_t}}}{{{{[A]}_0}}} = kt \\\ kt = 2.303\log \dfrac{{[{A_ \circ }]}}{{[{A_t}]}} \\\
T is 60 minute, [A] initial concentration and k=rate constant. Substituting the values we get
4.5×103=2.30360log1[At] [At]=0.7365molL1 R=K[At]=4.5×103×0.7365=3.44×103molL1min1  4.5 \times {10^{ - 3}} = \dfrac{{2.303}}{{60}}\log \dfrac{1}{{[{A_t}]}} \\\ [{A_t}] = 0.7365mol{L^{ - 1}} \\\ R = K[{A_t}] = 4.5 \times {10^{ - 3}} \times 0.7365 = 3.44 \times {10^{ - 3}}mol{L^{ - 1}}{\min ^{ - 1}} \\\
Hence the correct option is option A.

Note: Order of a reaction may be zero, fractional or integer.