Solveeit Logo

Question

Chemistry Question on Equilibrium

The rapid change of pHpH near the stoichiometric point of an acid base titration is the basis of indicator detection. pHpH of the solution is related to ratio of the concentrations of the conjugate acid (HInHIn) and base (In)(In^-) forms of the indicator given by the expression

A

log[In][HIn]=pKInpH\log \frac{[In^-]}{[HIn]} = pK_{In} - pH

B

log[HIn][In]=pKInpH\log \frac{[HIn]}{[In^-]} = pK_{In} - pH

C

log[HIn][In]=pHpKIn\log \frac{[HIn]}{[In^-]} = pH - pK_{In}

D

log[In][HIn]=pHpKIn\log \frac{[In^-]}{[HIn]} = pH - pK_{In}

Answer

log[In][HIn]=pHpKIn\log \frac{[In^-]}{[HIn]} = pH - pK_{In}

Explanation

Solution

Acid indicators are generally weak acid. The dissociation of indicator Hln takes place as follows HlnH++lnHln \rightleftharpoons H^+ + ln^- Kln=[H+][ln][Hln]\therefore K_{ln} = \frac{[H^+][ln^-]}{[Hln]} or [H+]=Kln.[Hln][ln][H^+] = K_{ln} . \frac{[Hln]}{[ln^-]} pH=log[H+]\because pH = - \log [H^+] pH=log(Kln.[Hln][ln])\therefore pH = - \log \bigg (K_{ln} . \frac{[Hln]}{[ln^-]} \bigg ) =logKln+log[ln][Hln]= - \log K_{ln} + \log \frac{[ln^-]}{[Hln]} =pKln+log[ln][Hln]= pK_{ln} + \log \frac{[ln^-]}{[Hln]} or log[ln][Hln]=pHpKln\log \frac{[ln^-]}{[Hln]} = pH - pK_{ln}