Solveeit Logo

Question

Question: The rank of the matrix \(A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 2 & - 1 \\ 0 & - 2 & - 4 & 2 \...

The rank of the matrix A=[231401210242]A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 2 & - 1 \\ 0 & - 2 & - 4 & 2 \end{bmatrix}is

A

2

B

3

C

1

D

Indeterminate

Answer

2

Explanation

Solution

We have A=[231401210242]3×4A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 2 & - 1 \\ 0 & - 2 & - 4 & 2 \end{bmatrix}_{3 \times 4}, Considering 3×3 minor

[231012024]3×3\begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & - 2 & - 4 \end{bmatrix}_{3 \times 3}its determinant is 0.

Similarly considering , [234011022]\begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & - 1 \\ 0 & - 2 & 2 \end{bmatrix}, [214021042]\begin{bmatrix} 2 & 1 & 4 \\ 0 & 2 & - 1 \\ 0 & - 4 & 2 \end{bmatrix} and

$\begin{bmatrix} 3 & 1 & 4 \ 1 & 2 & - 1 \

  • 2 & - 4 & 2 \end{bmatrix}$, their determinant is 0 each rank can not be 3

Then again considering a 2×2 minor, [2302]\begin{bmatrix} 2 & 3 \\ 0 & - 2 \end{bmatrix}, which is non zero. Thus, rank = 2