Solveeit Logo

Question

Question: The range of \(y=\sin \left( 3x \right)+\sin \left( x \right)\) is (a) \(\left[ \dfrac{-8}{3\sqrt{...

The range of y=sin(3x)+sin(x)y=\sin \left( 3x \right)+\sin \left( x \right) is
(a) [833,833]\left[ \dfrac{-8}{3\sqrt{3}},\dfrac{8}{3\sqrt{3}} \right]
(b) [433,433]\left[ \dfrac{-4}{3\sqrt{3}},\dfrac{4}{3\sqrt{3}} \right]
(c) [32,32]\left[ \dfrac{-3}{\sqrt{2}},\dfrac{3}{\sqrt{2}} \right]
(d) [332,322]\left[ \dfrac{-3}{3\sqrt{2}},\dfrac{3}{2\sqrt{2}} \right]

Explanation

Solution

Hint: We will apply the formula sin(3x)=3sinx4sin3x\sin \left( 3x \right)=3\sin x-4{{\sin }^{3}}x to solve the question. Also we will use some formulas of integration which are given as ddx(sinx)=cosx+c\dfrac{d}{dx}\left( \sin x \right)=\cos x+c and ddx(xn)=nxn1+c\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}+c where c is any constant. By differentiation formulas we will lead to the correct answer.

Complete step-by-step answer:
We will first consider the equation y=sin(3x)+sin(x)y=\sin \left( 3x \right)+\sin \left( x \right)...(i).Now we will use the formula of sin(3x)=3sinx4sin3x\sin \left( 3x \right)=3\sin x-4{{\sin }^{3}}x in trigonometric expression (i). Thus we will get y=3sinx4sin3x+sinx y=4sinx4sin3x \begin{aligned} & y=3\sin x-4{{\sin }^{3}}x+\sin x \\\ & \Rightarrow y=4\sin x-4{{\sin }^{3}}x \\\ \end{aligned}
Now, we will take the number 4 out from the equation as a common point between them. Thus we get y=4(sinxsin3x)...(ii)y=4\left( \sin x-{{\sin }^{3}}x \right)...(ii)
Now, we will use differentiation here. This is done by using ddx\dfrac{d}{dx} operation on both the sides of the equation. We will use the formula ddx(sinx)=cosx+c1\dfrac{d}{dx}\left( \sin x \right)=\cos x+{{c}_{1}} and ddx(xn)=nxn1+c2\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}+{{c}_{2}} where c1,c2{{c}_{1}},{{c}_{2}} are any constant. But in this we will not include c. Thus, we get
ddx(y)=ddx[4(sinxsin3x)] ddx(y)=4(ddx(sinx)ddx(sin3x)) ddx(y)=4(ddx(sinx)ddx(sinx)3) ddx(y)=4(cosx+c1[3(sin2x)×ddx(sinx)+c2]) \begin{aligned} & \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left[ 4\left( \sin x-{{\sin }^{3}}x \right) \right] \\\ & \Rightarrow \dfrac{d}{dx}\left( y \right)=4\left( \dfrac{d}{dx}\left( \sin x \right)-\dfrac{d}{dx}\left( {{\sin }^{3}}x \right) \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( y \right)=4\left( \dfrac{d}{dx}\left( \sin x \right)-\dfrac{d}{dx}{{\left( \sin x \right)}^{3}} \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( y \right)=4\left( \cos x+{{c}_{1}}-\left[ 3\left( {{\sin }^{2}}x \right)\times \dfrac{d}{dx}\left( \sin x \right)+{{c}_{2}} \right] \right) \\\ \end{aligned}
Now, we will again apply the formula ddx(sinx)=cosx+c3\dfrac{d}{dx}\left( \sin x \right)=\cos x+{{c}_{3}}. Therefore, we get
ddx(y)=4(cosx+c1[3(sin2x)×cosx+c2+c3]) ddx(y)=4(cosx3sin2xcosx+0) \begin{aligned} & \dfrac{d}{dx}\left( y \right)=4\left( \cos x+{{c}_{1}}-\left[ 3\left( {{\sin }^{2}}x \right)\times \cos x+{{c}_{2}}+{{c}_{3}} \right] \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( y \right)=4\left( \cos x-3{{\sin }^{2}}x\cos x+0 \right) \\\ \end{aligned}
Here, c1+c2+c3=0{{c}_{1}}+{{c}_{2}}+{{c}_{3}}=0 as being these as arbitrary constants. Now by the second derivative with respect to x we get,
ddx(ddx(y))=ddx(4(cosx3sin2xcosx)) d2dx2(y)=4(ddx(cosx)3ddx(sin2xcosx)) d2dx2(y)=4(ddx(cosx)3ddx(sin2xcosx))...(iii) \begin{aligned} & \dfrac{d}{dx}\left( \dfrac{d}{dx}\left( y \right) \right)=\dfrac{d}{dx}\left( 4\left( \cos x-3{{\sin }^{2}}x\cos x \right) \right) \\\ & \Rightarrow \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right)=4\left( \dfrac{d}{dx}\left( \cos x \right)-3\dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right) \right) \\\ & \Rightarrow \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right)=4\left( \dfrac{d}{dx}\left( \cos x \right)-3\dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right) \right)...(iii) \\\ \end{aligned}
By the formula (f.g)=fg+gf\left( f.g \right)'=f'g+g'f and the substitution f=sin2xf={{\sin }^{2}}x and g=cosxg=\cos x we get
ddx(sin2xcosx)=ddx(sin2x)cosx+ddx(cosx)sin2x\dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right)=\dfrac{d}{dx}\left( {{\sin }^{2}}x \right)\cos x+\dfrac{d}{dx}\left( \cos x \right){{\sin }^{2}}x. As we know that ddx(cosx)=sinx+c\dfrac{d}{dx}\left( \cos x \right)=-\sin x+c and ddx(xn)=nxn1+c\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}+c where c is any constant. Thus we get ddx(sin2xcosx)=(ddx(sin2x))cosx+(ddx(cosx))sin2x ddx(sin2xcosx)=(2sinxddx(sinx))cosx+(sinx)sin2x ddx(sin2xcosx)=(2sinxddx(sinx))cosxsin3x \begin{aligned} & \dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right)=\left( \dfrac{d}{dx}\left( {{\sin }^{2}}x \right) \right)\cos x+\left( \dfrac{d}{dx}\left( \cos x \right) \right){{\sin }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right)=\left( 2\sin x\dfrac{d}{dx}\left( \sin x \right) \right)\cos x+\left( -\sin x \right){{\sin }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right)=\left( 2\sin x\dfrac{d}{dx}\left( \sin x \right) \right)\cos x-{{\sin }^{3}}x \\\ \end{aligned}
Now, with the help of the formula ddx(sinx)=cosx+c\dfrac{d}{dx}\left( \sin x \right)=\cos x+c we have a new equation as,
ddx(sin2xcosx)=(2sinx(cosx))cosxsin3x ddx(sin2xcosx)=2sinxcos2xsin3x \begin{aligned} & \dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right)=\left( 2\sin x\left( \cos x \right) \right)\cos x-{{\sin }^{3}}x \\\ & \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right)=2\sin x{{\cos }^{2}}x-{{\sin }^{3}}x \\\ \end{aligned}
Now we will substitute the value of ddx(sin2xcosx)=2sinxcos2xsin3x\dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right)=2\sin x{{\cos }^{2}}x-{{\sin }^{3}}x in equation (iii). Thus, we have
d2dx2(y)=4(ddx(cosx)3ddx(sin2xcosx)) d2dx2(y)=4(ddx(cosx)3[2sinxcos2xsin3x]) \begin{aligned} & \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right)=4\left( \dfrac{d}{dx}\left( \cos x \right)-3\dfrac{d}{dx}\left( {{\sin }^{2}}x\cos x \right) \right) \\\ & \Rightarrow \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right)=4\left( \dfrac{d}{dx}\left( \cos x \right)-3\left[ 2\sin x{{\cos }^{2}}x-{{\sin }^{3}}x \right] \right) \\\ \end{aligned}
By formula ddx(cosx)=sinx+c\dfrac{d}{dx}\left( \cos x \right)=-\sin x+c we get d2dx2(y)=4(sinx6sinxcos2x+3sin3x)\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right)=4\left( -\sin x-6\sin x{{\cos }^{2}}x+3{{\sin }^{3}}x \right)....(iv).
Now we will substitute dydx=0\dfrac{dy}{dx}=0. This is due to the fact that by doing this we can get the maximum and minimum values of the range y. And thus we will be able to find the range of the equation (i). Thus, we get
ddx(y)=0 4(cosx3sin2xcosx)=0 cosx3sin2xcosx=0 cosx(13sin2x)=0 \begin{aligned} & \dfrac{d}{dx}\left( y \right)=0 \\\ & \Rightarrow 4\left( \cos x-3{{\sin }^{2}}x\cos x \right)=0 \\\ & \Rightarrow \cos x-3{{\sin }^{2}}x\cos x=0 \\\ & \Rightarrow \cos x\left( 1-3{{\sin }^{2}}x \right)=0 \\\ \end{aligned}
Therefore, we get cosx=0\cos x=0 and (13sin2x)=0\left( 1-3{{\sin }^{2}}x \right)=0. In cosx=0\cos x=0we will use the formula in which cosx=0\cos x=0 results into x=nπ±yx=n\pi \pm y where y is the angle given by cos(π2)=0\cos \left( \dfrac{\pi }{2} \right)=0. Therefore, y is π2\dfrac{\pi }{2}.
Now we will consider (13sin2x)=0\left( 1-3{{\sin }^{2}}x \right)=0. After simplifying it we get
(13sin2x)=0 1=3sin2x 13=sin2x ±13=sinx ±13=sinx \begin{aligned} & \left( 1-3{{\sin }^{2}}x \right)=0 \\\ & \Rightarrow 1=3{{\sin }^{2}}x \\\ & \Rightarrow \dfrac{1}{3}={{\sin }^{2}}x \\\ & \Rightarrow \pm \sqrt{\dfrac{1}{3}}=\sin x \\\ & \Rightarrow \pm \dfrac{1}{\sqrt{3}}=\sin x \\\ \end{aligned}
Therefore we have +13=sinx+\dfrac{1}{\sqrt{3}}=\sin x and 13=sinx-\dfrac{1}{\sqrt{3}}=\sin x.
Now we have three intervals to deal with; these are given by (,13],[13,13]\left( -\infty \right.,\left. -\dfrac{1}{\sqrt{3}} \right],\left[ -\dfrac{1}{\sqrt{3}}, \right.\left. \dfrac{1}{\sqrt{3}} \right] and [13,+)\left[ \dfrac{1}{\sqrt{3}}, \right.\left. +\infty \right). By putting the value of sinx=12\sin x=\dfrac{1}{2} from (,13]\left( -\infty \right.,\left. -\dfrac{1}{\sqrt{3}} \right] interval we will have sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} which is further sin(π6)=sinx\sin \left( \dfrac{\pi }{6} \right)=\sin x. Thus, by formula sinx=siny\sin x=\sin y resulting into x=nπ+yx=n\pi +y we get x=nπ+π6x=n\pi +\dfrac{\pi }{6} or by n = 0, x=π6x=\dfrac{\pi }{6}. After putting this value and sin(π6)=12,cos(π6)=32,3=1.73\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2},\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2},\sqrt{3}=1.73 values in equation (iv) we get
[d2dx2(y)](x=π6)=4(sinx6sinxcos2x+3sin3x) [d2dx2(y)](x=π6)=4((12)6(12)(32)2+3(12)3) [d2dx2(y)](x=π6)=4(126(13)(34)+3×18) [d2dx2(y)](x=π6)=4(12332+38) [d2dx2(y)](x=π6)=4(0.52.59+0.375) [d2dx2(y)](x=π6)=4(2.715) \begin{aligned} & {{\left[ \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right) \right]}_{\left( x=\dfrac{\pi }{6} \right)}}=4\left( -\sin x-6\sin x{{\cos }^{2}}x+3{{\sin }^{3}}x \right) \\\ & \Rightarrow {{\left[ \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right) \right]}_{\left( x=\dfrac{\pi }{6} \right)}}=4\left( -\left( \dfrac{1}{2} \right)-6\left( \dfrac{1}{2} \right){{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+3{{\left( \dfrac{1}{2} \right)}^{3}} \right) \\\ & \Rightarrow {{\left[ \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right) \right]}_{\left( x=\dfrac{\pi }{6} \right)}}=4\left( -\dfrac{1}{2}-6\left( \dfrac{1}{\sqrt{3}} \right)\left( \dfrac{3}{4} \right)+3\times \dfrac{1}{8} \right) \\\ & \Rightarrow {{\left[ \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right) \right]}_{\left( x=\dfrac{\pi }{6} \right)}}=4\left( -\dfrac{1}{2}-\dfrac{3\sqrt{3}}{2}+\dfrac{3}{8} \right) \\\ & \Rightarrow {{\left[ \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right) \right]}_{\left( x=\dfrac{\pi }{6} \right)}}=4\left( -0.5-2.59+0.375 \right) \\\ & \Rightarrow {{\left[ \dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( y \right) \right]}_{\left( x=\dfrac{\pi }{6} \right)}}=4\left( -2.715 \right) \\\ \end{aligned}
Since, this is less than zero so we have it as minimum value in this interval. Similarly we will get maximum in [13,13]\left[ -\dfrac{1}{\sqrt{3}}, \right.\left. \dfrac{1}{\sqrt{3}} \right] and maximum in [13,+)\left[ \dfrac{1}{\sqrt{3}}, \right.\left. +\infty \right) interval.
Now we will substitute +13=sinx+\dfrac{1}{\sqrt{3}}=\sin x belonging to [13,+)\left[ \dfrac{1}{\sqrt{3}}, \right.\left. +\infty \right) in equation (ii) we will get maximum value as,
y=4(sinxsin3x) y=4(13(13)3) y=4(13133) y=4(333133) y=4(233) y=833 \begin{aligned} & y=4\left( \sin x-{{\sin }^{3}}x \right) \\\ & \Rightarrow y=4\left( \dfrac{1}{\sqrt{3}}-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{3}} \right) \\\ & \Rightarrow y=4\left( \dfrac{1}{\sqrt{3}}-\dfrac{1}{3\sqrt{3}} \right) \\\ & \Rightarrow y=4\left( \dfrac{3}{3\sqrt{3}}-\dfrac{1}{3\sqrt{3}} \right) \\\ & \Rightarrow y=4\left( \dfrac{2}{3\sqrt{3}} \right) \\\ & \Rightarrow y=\dfrac{8}{3\sqrt{3}} \\\ \end{aligned}
And this will be regarded as the maximum value of range y.
Also, after we put 13=sinx-\dfrac{1}{\sqrt{3}}=\sin x belonging to (,13]\left( -\infty \right.,\left. -\dfrac{1}{\sqrt{3}} \right] and in equation (ii) we will get minimum value as,
y=4(sinxsin3x) y=4(13(13)3) y=4(13133) y=4(333133) y=4(233) y=833 \begin{aligned} & y=4\left( \sin x-{{\sin }^{3}}x \right) \\\ & \Rightarrow y=4\left( -\dfrac{1}{\sqrt{3}}-{{\left( -\dfrac{1}{\sqrt{3}} \right)}^{3}} \right) \\\ & \Rightarrow y=4\left( -\dfrac{1}{\sqrt{3}}-\dfrac{1}{3\sqrt{3}} \right) \\\ & \Rightarrow y=4\left( -\dfrac{3}{3\sqrt{3}}-\dfrac{1}{3\sqrt{3}} \right) \\\ & \Rightarrow y=4\left( \dfrac{-2}{3\sqrt{3}} \right) \\\ & \Rightarrow y=-\dfrac{8}{3\sqrt{3}} \\\ \end{aligned}
And this will be regarded as the minimum value of range y. Therefore, the range of y is given by the interval [833,833]\left[ \dfrac{-8}{3\sqrt{3}},\dfrac{8}{3\sqrt{3}} \right].
Hence, the correct option is (a).

Note: Using the formula sin(A)+sin(B)=2sin(A+B2)cos(AB2)\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) in the equation will lead to nowhere. Instead we have used the formula of sin(3x)=3sinx4sin3x\sin \left( 3x \right)=3\sin x-4{{\sin }^{3}}x to solve the question. Solving for the second derivative here is important here as by substituting the values in this we will be able to figure out the minimum and maximum points. As this question carries so many steps, one needs to focus on this question completely for solving it in a correct way leading to the right answer. Notice where we are taking the closed interval and where we are taking the open interval. Semi- open and semi-closed intervals are also used here.