Solveeit Logo

Question

Question: The range of values of a for which the point (a, 4) is outside the circles \(x ^ { 2 } + y ^ { 2 } +...

The range of values of a for which the point (a, 4) is outside the circles x2+y2+10x=0x ^ { 2 } + y ^ { 2 } + 10 x = 0 and x2+y212x+20=0x ^ { 2 } + y ^ { 2 } - 12 x + 20 = 0 is

A

(,8)(2,6)(6,+)( - \infty , - 8 ) \cup ( - 2,6 ) \cup ( 6 , + \infty )

B

(– 8, – 2)

C

(,8)(2,+)( - \infty , - 8 ) \cup ( - 2 , + \infty )

D

None of these

Answer

(,8)(2,6)(6,+)( - \infty , - 8 ) \cup ( - 2,6 ) \cup ( 6 , + \infty )

Explanation

Solution

For circle, x2+y2+10x=0x ^ { 2 } + y ^ { 2 } + 10 x = 0;

a2+(4)2+10a>0a2+10a+16>0a ^ { 2 } + ( 4 ) ^ { 2 } + 10 a > 0 \Rightarrow a ^ { 2 } + 10 a + 16 > 0 (a+8)(a+2)>0\Rightarrow \quad ( a + 8 ) ( a + 2 ) > 0

a<8\Rightarrow a < - 8 or a>2a > - 2 …..(i)

For circle, x2+y212x+20=0x ^ { 2 } + y ^ { 2 } - 12 x + 20 = 0 ;

a2+(4)212a+20>0a212a+36>0a ^ { 2 } + ( 4 ) ^ { 2 } - 12 a + 20 > 0 \Rightarrow a ^ { 2 } - 12 a + 36 > 0

aR\Rightarrow \quad a \in R{6}\{ 6 \}…..(ii)

Taking common values from (i) and (ii),

a(,8)(2,6)(6,+)a \in ( - \infty , - 8 ) \cup ( - 2,6 ) \cup ( 6 , + \infty )