Solveeit Logo

Question

Question: The range of the function \[y = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - {x^2}} } \right)\] i...

The range of the function y=3sin(π216x2)y = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - {x^2}} } \right) is

  1. [0,32]\left[ {0,\sqrt {\dfrac{3}{2}} } \right]
  2. [0, 1]
  3. [0,32]\left[ {0,\dfrac{3}{{\sqrt 2 }}} \right]
  4. [0,][0,\infty ]
Explanation

Solution

Hint : A function relates an input to an output. Domain is defined as the entire set of values possible for independent variables. The Range is found after substituting the possible x- values to find the y-values. Here, we are given a function and we need to find the range of the given function. For this, we will find the domain of the function. And then, substitute that value in place of x to get the final output.

Complete step-by-step answer :
Given that,
y=3sin(π216x2)y = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - {x^2}} } \right)
Here, we will find the range of this function, as below
π216x20\dfrac{{{\pi ^2}}}{{16}} - {x^2} \geqslant 0
π216x2\Rightarrow \dfrac{{{\pi ^2}}}{{16}} \geqslant {x^2}
x2π216\Rightarrow {x^2} \leqslant \dfrac{{{\pi ^2}}}{{16}}
0x2π216\Rightarrow 0 \leqslant {x^2} \leqslant \dfrac{{{\pi ^2}}}{{16}}
Thus, here the range of the domain is [0,π4]\left[ {0,\dfrac{\pi }{4}} \right] .
Let y=f(x)=3sin(π216x2)y = f(x) = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - {x^2}} } \right) -------- (1)
First, we will find y-min as below:
ymin{y_{\min }} will be min whenπ216\dfrac{{{\pi ^2}}}{{16}} should be min.
This means that x2{x^2} should be maximum.
x2\Rightarrow {x^2} will be max at π216\dfrac{{{\pi ^2}}}{{16}} .
x2=π216\therefore {x^2} = \dfrac{{{\pi ^2}}}{{16}} (i.e. we are using x=π4x = \dfrac{\pi }{4})
Thus, substituting this value in equation (1), we will get,
ymin=3sin(π216π216)\therefore {y_{\min }} = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - \dfrac{{{\pi ^2}}}{{16}}} } \right)
ymin=3sin(0)\Rightarrow {y_{\min }} = 3\sin (0)
ymin=3(0)\Rightarrow {y_{\min }} = 3(0) (sin(0)=0)(\because \sin (0) = 0)
ymin=0\Rightarrow {y_{\min }} = 0
Next, to find y-max as below:
ymax{y_{\max }} will be max, when π216\dfrac{{{\pi ^2}}}{{16}} will be max.
This means that x2 will be mine.
x2=0\Rightarrow {x^2} = 0 (i.e. we are using x = 0 here)
Thus, substituting this value in equation (1), we will get,
ymax=3sin(π2160)\therefore {y_{\max }} = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - 0} } \right)
ymax=3sin(π4)\Rightarrow {y_{\max }} = 3\sin \left( {\dfrac{\pi }{4}} \right)
ymax=3×12\Rightarrow {y_{\max }} = 3 \times \dfrac{1}{{\sqrt 2 }} (sin(π4)=12)\left( {\because \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}} \right)
ymax=32\Rightarrow {y_{\max }} = \dfrac{3}{{\sqrt 2 }}
Thus, y[0,32]y \in \left[ {0,\dfrac{3}{{\sqrt 2 }}} \right]
So, the correct answer is “Option 3”.

Note : Let, f(x)=y=3sin(π216x2)f(x) = y = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - {x^2}} } \right)
Thus, here the range of the domain is [0,π4]\left[ {0,\dfrac{\pi }{4}} \right] .
First, we will substitute x = 0 in the given equation:
f(0)=3sin(π216(0)2)\therefore f(0) = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}} - {{(0)}^2}} } \right)
f(0)=3sin(π216)\Rightarrow f(0) = 3\sin \left( {\sqrt {\dfrac{{{\pi ^2}}}{{16}}} } \right)
f(0)=3sin(π4)\Rightarrow f(0) = 3\sin \left( {\dfrac{\pi }{4}} \right)
f(0)=3×12\Rightarrow f(0) = 3 \times \dfrac{1}{{\sqrt 2 }} (sin(π4)=12)\left( {\because \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}} \right)
f(0)=32\Rightarrow f(0) = \dfrac{3}{{\sqrt 2 }}
Next, we will substitute x=π4x = \dfrac{\pi }{4} in the given equation:
Similarly, we will get, f(π4)=32f(\dfrac{\pi }{4}) = \dfrac{3}{{\sqrt 2 }} .
Hence, the range of the given function is [0,32]\left[ {0,\dfrac{3}{{\sqrt 2 }}} \right] .