Solveeit Logo

Question

Question: The range of the function $f(x) = \sqrt{4-x^2} + \sqrt{x^2-1}$ is...

The range of the function f(x)=4x2+x21f(x) = \sqrt{4-x^2} + \sqrt{x^2-1} is

A

[3,7][\sqrt{3},\sqrt{7}]

B

[3,5][\sqrt{3},\sqrt{5}]

C

[2,3][\sqrt{2},\sqrt{3}]

D

[3,6][\sqrt{3},\sqrt{6}]

Answer

[3,6][\sqrt{3},\sqrt{6}]

Explanation

Solution

To find the range of the function f(x)=4x2+x21f(x) = \sqrt{4-x^2} + \sqrt{x^2-1}, we follow these steps:

  1. Determine the domain:
    We need 4x204-x^2 \ge 0 and x210x^2-1 \ge 0. This implies 2x2-2 \le x \le 2 and (x1x \le -1 or x1x \ge 1). Thus, the domain is [2,1][1,2][-2, -1] \cup [1, 2].

  2. Substitute u=x2u = x^2:
    As xx varies over the domain, uu varies over [1,4][1, 4]. The function becomes g(u)=4u+u1g(u) = \sqrt{4-u} + \sqrt{u-1}.

  3. Find the range of g(u)g(u):
    We analyze g(u)g(u) on the interval [1,4][1, 4].

    • Evaluate at endpoints: g(1)=3g(1) = \sqrt{3} and g(4)=3g(4) = \sqrt{3}.
    • Find critical points: g(u)=124u+12u1g'(u) = \frac{-1}{2\sqrt{4-u}} + \frac{1}{2\sqrt{u-1}}. Setting g(u)=0g'(u) = 0, we get u=52u = \frac{5}{2}.
    • Evaluate at the critical point: g(52)=452+521=32+32=232=6g\left(\frac{5}{2}\right) = \sqrt{4 - \frac{5}{2}} + \sqrt{\frac{5}{2} - 1} = \sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} = 2\sqrt{\frac{3}{2}} = \sqrt{6}.
  4. Compare values:
    We have g(1)=3g(1) = \sqrt{3}, g(4)=3g(4) = \sqrt{3}, and g(52)=6g\left(\frac{5}{2}\right) = \sqrt{6}.

  5. Determine the range:
    The minimum value is 3\sqrt{3} and the maximum value is 6\sqrt{6}. Therefore, the range of f(x)f(x) is [3,6][\sqrt{3}, \sqrt{6}].