Solveeit Logo

Question

Question: The range of the function $f(x) = \frac{1}{40\cos x + 9\sin x + 50}$ is $(x \in R)$...

The range of the function f(x)=140cosx+9sinx+50f(x) = \frac{1}{40\cos x + 9\sin x + 50} is (xR)(x \in R)

Answer

[191,19]\left[\frac{1}{91},\frac{1}{9}\right]

Explanation

Solution

We rewrite the denominator as:

D(x)=40cosx+9sinx+50D(x)=40\cos x+9\sin x+50

The term 40cosx+9sinx40\cos x+9\sin x has a maximum and minimum value determined by:

402+92=1600+81=1681=41.\sqrt{40^2+9^2}=\sqrt{1600+81}=\sqrt{1681}=41.

Thus, its range is [41,41][-41,41].

Adding 50, we get:

D(x)[5041,50+41]=[9,91].D(x)\in[50-41,50+41]=[9,91].

Since f(x)=1D(x)f(x)=\frac{1}{D(x)} and 1/y1/y is a decreasing function for y>0y>0, the range of f(x)f(x) is:

[191,19].\left[\frac{1}{91},\frac{1}{9}\right].

Explanation (minimal):

  1. Maximum of 40cosx+9sinx=4140\cos x+9\sin x =41 and minimum 41-41.
  2. Denom range becomes [9,91][9,91].
  3. Taking reciprocal, range of f(x)=1D(x)f(x)=\frac{1}{D(x)} is [191,19]\left[\frac{1}{91},\frac{1}{9}\right].