Solveeit Logo

Question

Question: The range of the function \[f(x) = \tan \sqrt {\dfrac{{{\pi ^2}}}{9} - {x^2}} \] is \[\left( 1 \r...

The range of the function f(x)=tanπ29x2f(x) = \tan \sqrt {\dfrac{{{\pi ^2}}}{9} - {x^2}} is
(1) [0,3]\left( 1 \right){\text{ }}\left[ {0,3} \right]
(2) [0,3]\left( 2 \right){\text{ }}\left[ {0,\sqrt 3 } \right]
(3) (,)\left( 3 \right){\text{ }}\left( { - \infty ,\infty } \right)
(4)\left( 4 \right) None of these

Explanation

Solution

Take the value under the root greater than equal to zero (0)\left( { \geqslant 0} \right) . Then make the coefficient of x2{x^2} positive . Then find the domain of the function. By using the domain of the function, find the value of range of the function.

Complete step by step answer:
The given function is f(x)=tanπ29x2f(x) = \tan \sqrt {\dfrac{{{\pi ^2}}}{9} - {x^2}} .
Because the value under the root is always greater than equal to zero (0)\left( { \geqslant 0} \right) due to which the value under the root should be positive . So , we can say that
π29x20\dfrac{{{\pi ^2}}}{9} - {x^2} \geqslant 0
On multiplying the left side by negative sign ' - ' the coefficient of x2{x^2} becomes positive and the inequality sign changes as shown below
x2π290{x^2} - \dfrac{{{\pi ^2}}}{9} \leqslant 0
Now the left hand side term is of the form (a2b2)\left( {{a^2} - {b^2}} \right) . Therefore , by applying the formula (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) we get
(xπ3)(x+π3)0\left( {x - \dfrac{\pi }{3}} \right)\left( {x + \dfrac{\pi }{3}} \right) \leqslant 0
Therefore , (xπ3)0\left( {x - \dfrac{\pi }{3}} \right) \leqslant 0 and (x+π3)0\left( {x + \dfrac{\pi }{3}} \right) \leqslant 0
 xπ3\Rightarrow {\text{ x}} \leqslant \dfrac{\pi }{3} and xπ3{\text{x}} \leqslant - \dfrac{\pi }{3}
From this we can say that x[π3,π3]x \in \left[ { - \dfrac{\pi }{3},\dfrac{\pi }{3}} \right] . This is the domain of the function .
Now , xx lies from π3 - \dfrac{\pi }{3} to π3\dfrac{\pi }{3} . Therefore π3xπ3 - \dfrac{\pi }{3} \leqslant x \leqslant \dfrac{\pi }{3} . On squaring we get ,
0x2π290 \leqslant {x^2} \leqslant \dfrac{{{\pi ^2}}}{9}
Where 00 is the minimum value and π29\dfrac{{{\pi ^2}}}{9} is the maximum value . Now multiply by negative sign by the which inequality sign changes as shown below
0x2π290 \geqslant - {x^2} \geqslant - \dfrac{{{\pi ^2}}}{9}
Again on adding π29\dfrac{{{\pi ^2}}}{9} we get
π29x2+π290\dfrac{{{\pi ^2}}}{9} \geqslant - {x^2} + \dfrac{{{\pi ^2}}}{9} \geqslant 0
On applying square root we get
π3π29x20\dfrac{\pi }{3} \geqslant \sqrt {\dfrac{{{\pi ^2}}}{9} - {x^2}} \geqslant 0
We need the value of tan\tan and tan\tan is an increasing function . Therefore inequalities will not be changed. \therefore on multiplying the above equation by tan\tan we get
tanπ3tanπ29x2tan0\tan \dfrac{\pi }{3} \geqslant \tan \sqrt {\dfrac{{{\pi ^2}}}{9} - {x^2}} \geqslant \tan 0
The value of tanπ3\tan \dfrac{\pi }{3} is 3\sqrt 3 and that of tan0\tan 0 is 00
\therefore 3tanπ29x20\sqrt 3 \geqslant \tan \sqrt {\dfrac{{{\pi ^2}}}{9} - {x^2}} \geqslant 0
Hence, the Range of the function is [0,3]\left[ {0,\sqrt 3 } \right] .
Thus , the correct option is (2) [0,3]\left( 2 \right){\text{ }}\left[ {0,\sqrt 3 } \right].

Note:
When the derivative of a function is always positive then that function is increasing in its domain. f(x)=tanxf(x) = \tan x is an increasing function in (π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) . The range is the resulting values that the dependent variable can have as xx varies throughout the domain. Whereas the domain of a function is the specific set of values that the independent variable in a function can take on .