Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The range of the function f(x)=sin[x],π4<x<π4f(x)= \sin [x],-\frac {\pi}{4} < x < \frac {\pi}{4} where [x][x] denotes the greatest integer x\leq x, is ________

A

0\\{0\\}

B

0,1\\{0,-1\\}

C

0,±sin1\\{0, \pm sin\, 1\\}

D

0,sin1\\{0, - sin 1\\}

Answer

0,sin1\\{0, - sin 1\\}

Explanation

Solution

Given, f(x)=sin[x],π4<x<π4f(x)=\sin [x],-\frac{\pi}{4}< x< \frac{\pi}{4}
Clearly, sin0=0\sin 0=0
and [π4]=[3.144]=0\left[\frac{\pi}{4}\right]=\left[\frac{3.14}{4}\right]=0
x[0,π4],sin[x]=0\therefore \forall x \in\left[0, \frac{\pi}{4}\right], \sin [x]=0
x[π4,0),[x]=1\forall x \in\left[-\frac{\pi}{4}, 0\right),[x]=-1
sin[x]=sin(1)=sin1\therefore \sin [x]=\sin (-1)=-\sin 1
So, the range of f(x)f(x) is 0,sin1\\{0,-\sin 1\\}.