Solveeit Logo

Question

Mathematics Question on Functions

The range of the function f(x)x2x+1x2+x+1f(x)\frac{{{x}^{2}}-x+1}{{{x}^{2}}+x+1} where xR,x\in R, is

A

(,3](-\infty ,3]

B

(,)(-\infty ,\,\infty )

C

[3,)[3,\infty )

D

[13,3]\left[ \frac{1}{3},3 \right]

Answer

[13,3]\left[ \frac{1}{3},3 \right]

Explanation

Solution

Let y=x2x+1x2+x+1y=\frac{{{x}^{2}}-x+1}{{{x}^{2}}+x+1} \Rightarrow x2(y1)+4(y+1)+(y1)=0{{x}^{2}}(y-1)+4(y+1)+(y-1)=0 Now, D0D\ge 0 \Rightarrow (y+1)24(y1)20{{(y+1)}^{2}}-4{{(y-1)}^{2}}\ge 0 \Rightarrow 3y23+10y0-3{{y}^{2}}-3+10y\ge 0 \Rightarrow 3y210y+303{{y}^{2}}-10y+3\le 0 \Rightarrow y=10±6460y=\frac{10\pm \sqrt{64}}{6}\le 0 (y13)(y3)0\left( y-\frac{1}{3} \right)(y-3)\le 0 \Rightarrow y[13,3]y\in \left[ \frac{1}{3},3 \right]