Solveeit Logo

Question

Question: The range of the function \(f(x) = {\cot ^{ - 1}}\theta \left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)}...

The range of the function f(x)=cot1θ(log0.5(x42x2+3))f(x) = {\cot ^{ - 1}}\theta \left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)

A. (0,π)(0,\pi )

B. (0,3π4](0,\dfrac{{3\pi }}{4}]

C. [3π4,π)[\dfrac{{3\pi }}{4},\pi )

D. [π2,3π4]\left[ {\dfrac{\pi }{2},\dfrac{{3\pi }}{4}} \right]

Explanation

Solution

For finding the range of a function we’ll first assume the function as a new variable let say y, now we’ll transform the equation in such a way that the equation will become y in terms of x and check for which value of y, x is defined and that set will be the range of the function.

Complete step by step Answer:

Given data: f(x)=cot1(log0.5(x42x2+3))f(x) = {\cot ^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)

Let us assume that y=f(x)y = f(x)

Substituting the value of f(x)

y=cot1(log0.5(x42x2+3)) \Rightarrow y = {\cot ^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)

Taking both the sides as the function of the cot

coty=cot(cot1(log0.5(x42x2+3))) \Rightarrow \cot y = \cot \left( {{{\cot }^{ - 1}}\left( {{{\log }_{0.5}}({x^4} - 2{x^2} + 3)} \right)} \right)

Using cot(cot1A)=A\cot \left( {{{\cot }^{ - 1}}A} \right) = A, we get,

coty=log0.5(x42x2+3) \Rightarrow \cot y = {\log _{0.5}}({x^4} - 2{x^2} + 3)

We know that if c=logabc = {\log _a}b then, ac=b{a^c} = b

0.5coty=x42x2+3 \Rightarrow {0.5^{\cot y}} = {x^4} - 2{x^2} + 3
(12)coty=x42x2+3\Rightarrow {\left( {\dfrac{1}{2}} \right)^{\cot y}} = {x^4} - 2{x^2} + 3

On expanding the constant term, we get,

(12)coty=x42x2+1+2 \Rightarrow {\left( {\dfrac{1}{2}} \right)^{\cot y}} = {x^4} - 2{x^2} + 1 + 2

Using a2+b2+2ab=(a+b)2{a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}, we get,

(2)coty=(x2+1)2+2............(i) \Rightarrow {\left( 2 \right)^{ - \cot y}} = {\left( {{x^2} + 1} \right)^2} + 2............(i)

Since the square of any number is always greater than or equal to zero

Therefore we can say that, (x2+1)20{\left( {{x^2} + 1} \right)^2} \geqslant 0
Adding 2 on both sides

(x2+1)2+22 \Rightarrow {\left( {{x^2} + 1} \right)^2} + 2 \geqslant 2

i.e. [(x2+1)2+2][2,)\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [2,\infty )

from equation(i)

(2)coty[2,) \Rightarrow {\left( 2 \right)^{ - \cot y}} \in [2,\infty )

On comparing we can say that coty[1,) - \cot y \in [1,\infty )

coty(,1] \Rightarrow \cot y \in ( - \infty , - 1]

y(0,3π4] \Rightarrow y \in (0,\dfrac{{3\pi }}{4}]
Therefore the range of the function f(x)(0,3π4]f(x) \in (0,\dfrac{{3\pi }}{4}]
Option(B) is correct.

Note: An alternative method for this solution can be
Since the square of any number is always greater than or equal to zero
Therefore we can say that, (x2+1)20{\left( {{x^2} + 1} \right)^2} \geqslant 0
Adding 2 on both sides
(x2+1)2+22\Rightarrow {\left( {{x^2} + 1} \right)^2} + 2 \geqslant 2
Therefore, [(x2+1)2+2][2,)\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [2,\infty )
Taking logarithm function with base 0.5 on both sides and since log, with baseless than one is a decreasing function
log0.5[(x2+1)2+2][log0.52,log0.5)\Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in [{\log _{0.5}}2,{\log _{0.5}}\infty )
log0.5[(x2+1)2+2](log21,log212]\Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ({\log _{{2^{ - 1}}}}\infty ,{\log _{{2^{ - 1}}}}2]

Using logabc=1blogac{\log _{{a^b}}}c = \dfrac{1}{b}{\log _a}c

log0.5[(x2+1)2+2](log2,log22] \Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ( - {\log _2}\infty , - {\log _2}2]
log0.5[(x2+1)2+2](,1]\Rightarrow {\log _{0.5}}\left[ {{{\left( {{x^2} + 1} \right)}^2} + 2} \right] \in ( - \infty , - 1]
Now, taking both sides as the function of cot1θ{\cot ^{ - 1}}\theta and since it is also a decreasing function
cot1[log0.5((x2+1)2+2)][cot11,cot1)\Rightarrow {\cot ^{ - 1}}\left[ {{{\log }_{0.5}}\left( {{{\left( {{x^2} + 1} \right)}^2} + 2} \right)} \right] \in [{\cot ^{ - 1}} - 1,{\cot ^{ - 1}} - \infty )
Substituting cot1[log0.5((x2+1)2+2)]=f(x){\cot ^{ - 1}}\left[ {{{\log }_{0.5}}\left( {{{\left( {{x^2} + 1} \right)}^2} + 2} \right)} \right] = f(x)
f(x)(0,3π4]\Rightarrow f(x) \in (0,\dfrac{{3\pi }}{4}]
Option(B) is correct