Solveeit Logo

Question

Mathematics Question on Relations and functions

The range of the function f(x)=x2x+1x2+x+1f\left(x\right)=\frac{x^{2}-x+1}{x^{2}+x+1} where xRx \in R

A

(,3](-\infty, 3]

B

(,)\left(-\infty, \infty\right)

C

[3,)[3, \infty)

D

[13,3]\left[\frac{1}{3}, 3\right]

Answer

[13,3]\left[\frac{1}{3}, 3\right]

Explanation

Solution

We have, y=x2x+1x2+x+1y=\frac{x^{2}-x+1}{x^{2}+x+1} yx2+yx+yx2+x1=0\Rightarrow y\,x^{2}+yx+y-x^{2}+x-1=0 x2(y1)+x(y+1)+(y1)=0\Rightarrow x^{2}\left(y-1\right)+x\left(y+1\right)+\left(y-1\right)=0 x=(y+1)±(y+1)24(y1)22(y1)\therefore x=\frac{-\left(y+1\right) \pm\sqrt{\left(y+1\right)^{2}-4\left(y-1\right)^{2}}}{2\left(y-1\right)} =(y+1)±3y2+10y32(y1)=\frac{-\left(y+1\right) \pm\sqrt{-3y^{2}+10y-3}}{2\left(y-1\right)} If y=1y = 1 then original equation gives x=0x = 0. Also, 3y2+10y30-3y^{2}+10y-3 \ge 0 3y210y+30\Rightarrow 3y^{2}-10y+3 \le 0 3y29yy+30\Rightarrow 3y^{2}-9y-y+3 \le 0 (3y1)(y3)0\Rightarrow \left(3y-1\right)\left(y-3\right) \le 0 y[13,3]\Rightarrow y \in\left[\frac{1}{3}, 3\right] \therefore Range is [13,3]\left[\frac{1}{3}, 3\right].