Solveeit Logo

Question

Mathematics Question on Application of derivatives

The range of the function f(x)=x1+x,xR,f \left(x\right)=\frac{x}{1+\left|x\right|}, x\,\in\,R, is

A

RR

B

(1,1)(-1, 1)

C

R-\left\\{0\right\\}

D

[1,1][-1, 1]

Answer

(1,1)(-1, 1)

Explanation

Solution

f(x)=x1+x,xRf \left(x\right)=\frac{x}{1+\left|x\right|}, x\,\in\,R If x>0,x=xf(x)=.x1+xx>0, \left|x\right|=x \Rightarrow f \left(x\right)=\frac{.x}{1+x} which is not defined for x=1x = -1 If x>0,x=xf(x)=.x1+xx>0, \left|x\right|=x \Rightarrow f \left(x\right)=\frac{.x}{1+x} which is not defined for x=1x = 1 Thus f(x)f (x) defined for all values of RR except 1 and-1 Hence, range =(1,1).= (-1, 1).