Question
Question: The range of the function \(f\left( x \right) = {}^{7 - x}{P_{x - 3}}\) is A) {1, 2, 3} B) {1, 2...
The range of the function f(x)=7−xPx−3 is
A) {1, 2, 3}
B) {1, 2, 3, 4, 5}
C) {1, 2, 3, 4}
D) {1, 2, 3, 4, 5, 6}
Solution
The given function is f(x)=7−xPx−3 .
Firstly, find the range of the variable x from the function f(x) .
Then, put the different values of x in function f(x) .
Finally, this will give the range of the given function f(x)=7−xPx−3
Complete step by step solution:
The given function is f(x)=7−xPx−3 .
So, the given function is defined when x−3⩾0 .
∴x⩾3
Now, f(x)=7−xPx−3=(7−x−x+3)!(7−x)!=(10−2x)!(7−x)!
So, the given function is also defined when 10−2x⩾0 .
∴−2x⩾−10 ∴x⩽5
Thus, we get a range of variable x as 3⩽x⩽5 .
So, the range of x will be \left\\{ {f\left( 3 \right),f\left( 4 \right),f\left( 5 \right)} \right\\}
Now,
f(3)=7−3P3−3=4P0=(4−0)!4!=4!4!=1
f(4)=7−4P4−3=3P1=(3−1)!3!=2!3!=3
f(5)=7−5P5−3=2P2=(2−2)!2!=0!2!=2
Thus, we get the range of the given function as {1, 3, 2} = {1, 2, 3}
So, option (A) is correct.
Note:
Alternate method to find the range of the variable x:
Here, the given function is f(x)=7−xPx−3 .
So, x−3 must be greater than or equal to 0.
x−3⩾0
∴x⩾3
Also, any permutation nPr is defined when n⩾r .
So, in this question 7−x⩾x−3
∴7+3⩾2x ∴2x⩽10 ∴x⩽5
Thus, we get the range of variable x as 3⩽x⩽5 .