Solveeit Logo

Question

Question: The range of real number a for which the equation z + a \|z – 1\| + 2i = 0 has a solution is –...

The range of real number a for which the equation z + a |z – 1| + 2i = 0 has a solution is –

A

[52,52]\left\lbrack –\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2} \right\rbrack

B

[32,32]\left\lbrack –\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2} \right\rbrack

C

[0,52]\left\lbrack 0,\frac{\sqrt{5}}{2} \right\rbrack

D

(,52]\left( –\infty,–\frac{\sqrt{5}}{2} \right\rbrackČ[52,)\left\lbrack \frac{\sqrt{5}}{2},\infty \right)

Answer

[52,52]\left\lbrack –\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2} \right\rbrack

Explanation

Solution

Sol. Let z = x + iy.

We have, z + a|z – 1| + 2i = 0

Ž x + i (y + 2) + a(x1)2+y2\sqrt{(x - 1)^{2} + y^{2}}= 0

Equating real and imaginary parts

y + 2 = 0 \ y = –2 and x + a(x1)2+4\sqrt{(x - 1)^{2} + 4}= 0

\ x2 = a2 (x2 – 2x + 5)

or (1 – a2)x2 + 2a2x – 5a2 = 0

Since x is real,

\ D = B2 – 4aC ³ 0

Ž 4a4 + 20a2 (1 – a2) ³ 0

Ž –4a4 + 5a2 £ 0

Ž 4a2 (α254)\left( \alpha^{2} - \frac{5}{4} \right) £ 0

Ž 52\frac{- \sqrt{5}}{2} £ a £ 52\frac{\sqrt{5}}{2}.