Solveeit Logo

Question

Question: The range of \(f(x) = \sec\left( \frac{\pi}{4}\cos^{2}x \right), - \infty < x < \infty\) is...

The range of f(x)=sec(π4cos2x),<x<f(x) = \sec\left( \frac{\pi}{4}\cos^{2}x \right), - \infty < x < \infty is

A

[1,2]\lbrack 1,\sqrt{2}\rbrack

B

[1,)\lbrack 1,\infty)

C

[2,1][1,2]\lbrack - \sqrt{2}, - 1\rbrack \cup \lbrack 1,\sqrt{2}\rbrack

D

(,1][1,)( - \infty, - 1\rbrack \cup \lbrack 1,\infty)

Answer

[1,2]\lbrack 1,\sqrt{2}\rbrack

Explanation

Solution

f(x)=sec(π4cos2x)f(x) = \sec\left( \frac{\pi}{4}\cos^{2}x \right)

We know that, 0cos2x10 \leq \cos^{2}x \leq 1 at cosx=0,f(x)=1\cos x = 0,f(x) = 1

and at cosx=1,\cos x = 1, f(x)=2f(x) = \sqrt{2}

1x21 \leq x \leq \sqrt{2}x[1,2]x \in \lbrack 1,\sqrt{2}\rbrack.