Solveeit Logo

Question

Question: The range of \(f(x) = \cos x - \sin x,\) is...

The range of f(x)=cosxsinx,f(x) = \cos x - \sin x, is

A

(1,1)( - 1,1)

B

[1,1)\lbrack - 1,1)

C

[π2,π2]\left\lbrack - \frac{\pi}{2},\frac{\pi}{2} \right\rbrack

D

[2,2]\lbrack - \sqrt{2},\sqrt{2}\rbrack

Answer

[2,2]\lbrack - \sqrt{2},\sqrt{2}\rbrack

Explanation

Solution

Let,f(x)=cosxsinxf(x)=2(12cosx12sinx)f(x) = \cos x - \sin x \Rightarrow f(x) = \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x \right)

f(x)=2cos(x+π4)\Rightarrow f(x) = \sqrt{2}\cos\left( x + \frac{\pi}{4} \right)

Now since, 1cos(x+π4)1- 1 \leq \cos\left( x + \frac{\pi}{4} \right) \leq 1 2f(x)2\Rightarrow - \sqrt { 2 } \leq f ( x ) \leq \sqrt { 2 }

f(x)[2,2]\Rightarrow f(x) \in \lbrack - \sqrt{2},\sqrt{2}\rbrack

Trick : \because Maximum value of cosxsinx\cos x - \sin x is 2\sqrt{2} and

minimum value of cosxsinx\cos x - \sin x is 2- \sqrt{2}.

Hence, range of f(x)=[2,2]f(x) = \lbrack - \sqrt{2},\sqrt{2}\rbrack.