Solveeit Logo

Question

Question: The range of \(\frac{1 + x^{2}}{x^{2}}\)...

The range of 1+x2x2\frac{1 + x^{2}}{x^{2}}

A

(0,1)(0,1)

B

(1,)(1,\infty)

C

[0, 1]

D

[1,)\lbrack 1,\infty)

Answer

(1,)(1,\infty)

Explanation

Solution

Let y=1+x2x2x2y=1+x2y = \frac{1 + x^{2}}{x^{2}} \Rightarrow x^{2}y = 1 + x^{2} x2(y1)=1\Rightarrow x^{2}(y - 1) = 1

x2=1y1\Rightarrow x^{2} = \frac{1}{y - 1}

Now since, x2>01y1>0(y1)>0x^{2} > 0 \Rightarrow \frac{1}{y - 1} > 0 \Rightarrow (y - 1) > 0 y>1\Rightarrow y > 1

y(1,)\Rightarrow y \in (1,\infty)

Trick : y=1+x2x2=1+1x2y = \frac{1 + x^{2}}{x^{2}} = 1 + \frac{1}{x^{2}}. Now since, 1x2\frac{1}{x^{2}} is always > 0 y>1y(1,)\Rightarrow y > 1 \Rightarrow y \in (1,\infty).