Solveeit Logo

Question

Question: The range of \[f\left( x \right) = {}^{16 - x}{C_{2x - 1}} + {}^{20 - 3x}{C_{4x - 5}}\] is A) [728...

The range of f(x)=16xC2x1+203xC4x5f\left( x \right) = {}^{16 - x}{C_{2x - 1}} + {}^{20 - 3x}{C_{4x - 5}} is
A) [728,1474]
B) {0.728}
C) {728,1617}
D) None of these

Explanation

Solution

A combination is a mathematical technique that determines the number of possible arrangements in a collection of numbers where the order of the selection does not matter. Given by the formula nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}, where n is the number of items and r is the number of items to choose at a time.
In the given question, find the ranges of x from its lower limit to its higher limit by following the above-discussed properties of the combination.

Complete step by step answer:
Given function is f(x)=16xC2x1+203xC4x5f\left( x \right) = {}^{16 - x}{C_{2x - 1}} + {}^{20 - 3x}{C_{4x - 5}}
The formula for combination is given asnCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}, where
\Rightarrow n>0n > 0and nNn \in N
\Rightarrow r0r \geqslant 0and rNr \in N
Also nrn \geqslant r
Hence we can write in the first term of function 16xC2x1{}^{16 - x}{C_{2x - 1}}

16x>0 x<16(i) \Rightarrow 16 - x > 0 \\\ \Rightarrow x < 16 - - - - (i) \\\

Also

2x10 x12(ii) \Rightarrow 2x - 1 \geqslant 0 \\\ \Rightarrow x \geqslant \dfrac{1}{2} - - - - (ii) \\\

And

16x2x1 16+12x+x 3x17 x173(iii) \Rightarrow 16 - x \geqslant 2x - 1 \\\ \Rightarrow 16 + 1 \geqslant 2x + x \\\ \Rightarrow 3x \leqslant 17 \\\ \Rightarrow x \leqslant \dfrac{{17}}{3} - - - - (iii) \\\

So from equation (i), (ii) and (iii), the point of intersection for the range of x is given as:
\Rightarrow 12x173(iv)\dfrac{1}{2} \leqslant x \leqslant \dfrac{{17}}{3} - - - - (iv)
Hence we get the range of the first term.
Now check for the first term of the function203xC4x5{}^{20 - 3x}{C_{4x - 5}},

203x>0 3x<20 x<203(v) \Rightarrow 20 - 3x > 0 \\\ \Rightarrow 3x < 20 \\\ \Rightarrow x < \dfrac{{20}}{3} - - - - (v) \\\

Also

4x50 4x5 x54(vi) \Rightarrow 4x - 5 \geqslant 0 \\\ \Rightarrow 4x \geqslant 5 \\\ \Rightarrow x \geqslant \dfrac{5}{4} - - - - (vi) \\\

And

203x4x5 20+54x+3x 257x x257(vii) \Rightarrow 20 - 3x \geqslant 4x - 5 \\\ \Rightarrow 20 + 5 \geqslant 4x + 3x \\\ \Rightarrow 25 \geqslant 7x \\\ \Rightarrow x \leqslant \dfrac{{25}}{7} - - - - (vii) \\\

So from equation (v), (vi) and (vii), the point of intersection for the range of x is given as:
\Rightarrow 54x257(viii)\dfrac{5}{4} \leqslant x \leqslant \dfrac{{25}}{7} - - - - (viii)
Now form equation (iv) and (viii) for the intersection of x for the function comparing the range of both terms, we get
\Rightarrow 54x257(ix)\dfrac{5}{4} \leqslant x \leqslant \dfrac{{25}}{7} - - - - (ix)
So we get the domain range of the function.
As we know, the terms of the functions should be Natural number; hence we can write
\Rightarrow 16xN16 - x \in N
And this is possible only if x is an integer xIx \in I, and if x is an integer then all the numbers will be a natural number,
Now consider for the domain range of x from the equation (ix), it gives a natural number if it is an integer
\Rightarrow 54x257\dfrac{5}{4} \leqslant x \leqslant \dfrac{{25}}{7}
So the integer number which lies in this range is {2, 3}
So ifx=2x = 2the range of the function

f(x)=16xC2x1+203xC4x5 f(2)=162C2×21+203×2C4×25 =14C3+14C3 \Rightarrow f\left( x \right) = {}^{16 - x}{C_{2x - 1}} + {}^{20 - 3x}{C_{4x - 5}} \\\ \Rightarrow f\left( 2 \right) = {}^{16 - 2}{C_{2 \times 2 - 1}} + {}^{20 - 3 \times 2}{C_{4 \times 2 - 5}} \\\ = {}^{14}{C_3} + {}^{14}{C_3} \\\

Where nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
Hence we can write
14C3=14!3!(11)!=14×13×123×2=364{}^{14}{C_3} = \dfrac{{14!}}{{3!\left( {11} \right)!}} = \dfrac{{14 \times 13 \times 12}}{{3 \times 2}} = 364
Therefore

f(2)=14C3+14C3 =364+364 =728  f\left( 2 \right) = {}^{14}{C_3} + {}^{14}{C_3} \\\ = 364 + 364 \\\ = 728 \\\

Now whenx=3x = 3the range of the function

f(x)=16xC2x1+203xC4x5 f(2)=163C2×31+203×3C4×35 =13C5+11C7 \Rightarrow f\left( x \right) = {}^{16 - x}{C_{2x - 1}} + {}^{20 - 3x}{C_{4x - 5}} \\\ \Rightarrow f\left( 2 \right) = {}^{16 - 3}{C_{2 \times 3 - 1}} + {}^{20 - 3 \times 3}{C_{4 \times 3 - 5}} \\\ = {}^{13}{C_5} + {}^{11}{C_7} \\\

Where nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
Hence we can write
13C5=13!5!(8)!=13×12×11×10×95×4×3×2=1287{}^{13}{C_5} = \dfrac{{13!}}{{5!\left( 8 \right)!}} = \dfrac{{13 \times 12 \times 11 \times 10 \times 9}}{{5 \times 4 \times 3 \times 2}} = 1287
11C7=11!4!(7)!=11×10×9×84×3×2=330{}^{11}{C_7} = \dfrac{{11!}}{{4!\left( 7 \right)!}} = \dfrac{{11 \times 10 \times 9 \times 8}}{{4 \times 3 \times 2}} = 330
Therefore

f(2)=13C5+11C7 =1287+330 =1617  f\left( 2 \right) = {}^{13}{C_5} + {}^{11}{C_7} \\\ = 1287 + 330 \\\ = 1617 \\\

Hence the range of f\left( x \right) = \left\\{ {728,1617} \right\\}, so Option C is correct.

Note: The range of a function is a set of outputs achieved when it is applied to its whole set of outputs. The range of a set of data is the difference between the highest and the lowest values in the set. As the solution is a bit complex and involves many calculations, it is advised to the students to be careful while applying the inequalities. Even a change in the single sign in equality can lead to wrong answers.