Solveeit Logo

Question

Question: The range of a ∈ R for which the function $f(x) = (4a - 3)(x + \log_e 5)+2(a - 7)\cot(\frac{x}{2})\s...

The range of a ∈ R for which the function f(x)=(4a3)(x+loge5)+2(a7)cot(x2)sin2(x2)f(x) = (4a - 3)(x + \log_e 5)+2(a - 7)\cot(\frac{x}{2})\sin^2(\frac{x}{2}), x2nπ,nNx \neq 2n\pi, n \in N, has critical points, is:

Answer

[-4/3, 2]

Explanation

Solution

The function is f(x)=(4a3)(x+loge5)+(a7)sin(x)f(x) = (4a - 3)(x + \log_e 5) + (a - 7)\sin(x). The derivative is f(x)=(4a3)+(a7)cos(x)f'(x) = (4a - 3) + (a - 7)\cos(x). Critical points exist if f(x)=0f'(x) = 0 has a solution. If a=7a=7, f(x)=25f'(x) = 25, which is never zero. If a7a \neq 7, then cos(x)=4a3a7=34aa7\cos(x) = -\frac{4a-3}{a-7} = \frac{3-4a}{a-7}. For a solution to exist, we need 134aa71-1 \le \frac{3-4a}{a-7} \le 1. Solving 34aa71\frac{3-4a}{a-7} \le 1 gives 105aa70    a2a70\frac{10-5a}{a-7} \le 0 \implies \frac{a-2}{a-7} \ge 0, so a(,2](7,)a \in (-\infty, 2] \cup (7, \infty). Solving 34aa71\frac{3-4a}{a-7} \ge -1 gives 3a4a70    3a+4a70\frac{-3a-4}{a-7} \ge 0 \implies \frac{3a+4}{a-7} \le 0, so a[4/3,7)a \in [-4/3, 7). The intersection of these ranges is a[4/3,2]a \in [-4/3, 2]. We need to ensure that the solutions xx are in the domain x2nπx \neq 2n\pi. If a=2a=2, cos(x)=1\cos(x)=1, so x=2kπx=2k\pi. x=0x=0 is a solution in the domain. If a=4/3a=-4/3, cos(x)=1\cos(x)=-1, so x=(2k+1)πx=(2k+1)\pi. These are not of the form 2nπ2n\pi. For a(4/3,2)a \in (-4/3, 2), cos(x)(1,1)\cos(x) \in (-1, 1), so x2kπx \neq 2k\pi. Thus, the range of aa is [4/3,2][-4/3, 2].