Solveeit Logo

Question

Question: The radius of the nucleus is proportional to, (if A is the atomic mass number) \(A.\quad A\) \(B...

The radius of the nucleus is proportional to, (if A is the atomic mass number)
A.AA.\quad A
B.A3B.\quad { A }^{ 3 }
C.A13C.\quad { A }^{ \dfrac { 1 }{ 3 } }
D.A23D.\quad { A }^{ \dfrac { 2 }{ 3 } }

Explanation

Solution

Use result from Rutherford’s experiment stating relation between volume of nucleus and atomic mass number. Substitute value for volume of nucleus and find the relation between radius of nucleus and atomic mass number.

Formula used:
VolumeofnucleusAtomicmassnumberVolume\quad of\quad nucleus\quad \propto \quad Atomic\quad mass\quad number

Complete step-by-step answer:
According to Rutherford’s Experiment, volume of nucleus is proportional to atomic mass number.

VolumeofnucleusAtomicmassnumberVolume\quad of\quad nucleus\quad \propto \quad Atomic\quad mass\quad number
VA\therefore \quad V\quad \propto \quad A

But, volume of nucleus is 43πR3\dfrac { 4 }{ 3 } \pi { R }^{ 3 }

43πR3A\therefore \dfrac { 4 }{ 3 } \pi { R }^{ 3 }\quad \propto \quad A
R3A\therefore \quad { R }^{ 3 }\quad \propto \quad A
RA13\therefore \quad { R }\quad \propto \quad { A }^{ \dfrac { 1 }{ 3 } } …(1)
R=R0A13\therefore \quad R={ R }_{ 0 }\quad { A }^{ \dfrac { 1 }{ 3 } }
where, R0{ R }_{ 0 } is a constant and R0=1.2×1015m{ R }_{ 0 }=\quad 1.2\times { 10 }^{ -15 }m= 1.2 fm.
The value of R0{ R }_{ 0 } is the same for every nucleus.

From equation (1), we can say RA13{ R\quad }\propto \quad { A }^{ \dfrac { 1 }{ 3 } }

So, the correct answer is “Option C”.

Note:
This relation between the radius of nucleus and atomic mass number can be used to find the unknown radius of one nucleus if radius and atomic mass number of another nucleus is given. And similarly unknown atomic mass number can be calculated from the known radius and atomic mass number of another nucleus.