Solveeit Logo

Question

Question: The radius of the cylinder of maximum volume, which can be inscribed a sphere of radius R is...

The radius of the cylinder of maximum volume, which can be inscribed a sphere of radius R is

A

23R\frac{2}{3}R

B

23R\sqrt{\frac{2}{3}}R

C

34R\frac{3}{4}R

D

34R\sqrt{\frac{3}{4}}R

Answer

23R\sqrt{\frac{2}{3}}R

Explanation

Solution

If r be the radius and h the height, the from the figure, r2+(h2)2=R2r^{2} + \left( \frac{h}{2} \right)^{2} = R^{2}h2=4(R2r2)h^{2} = 4(R^{2} - r^{2})

Now, V=πr2h=2πr2R2r2V = \pi r^{2}h = 2\pi r^{2}\sqrt{R^{2} - r^{2}}

\therefore dVdr=4πrR2r2+2πr2.12(2r)R2r2\frac{dV}{dr} = 4\pi r\sqrt{R^{2} - r^{2}} + 2\pi r^{2}.\frac{1}{2}\frac{( - 2r)}{\sqrt{R^{2} - r^{2}}}

For max. or min., dVdr=0\frac{dV}{dr} = 0

4πrR2r2=2πr3R2r24\pi r\sqrt{R^{2} - r^{2}} = \frac{2\pi r^{3}}{\sqrt{R^{2} - r^{2}}}2(R2r2)=r22(R^{2} - r^{2}) = r^{2}

2R2=3r22R^{2} = 3r^{2}r=23Rr = \sqrt{\frac{2}{3}}Rd2Vdr2=ve\frac{d^{2}V}{dr^{2}} = - ve.

Hence V is max. when r=23Rr = \sqrt{\frac{2}{3}}R.