Solveeit Logo

Question

Mathematics Question on Mensuration

The radius of the circumcircle of an equilateral triangle of side 12 cm is

A

(\frac{4}{3})$$\sqrt{3} cm

B

43\sqrt{3} cm

C

42\sqrt{2} cm

D

(\frac{4}{3})$$\sqrt{2} cm

Answer

43\sqrt{3} cm

Explanation

Solution

From the question we know that, Side of the equilateral triangle = 12 cm

Area of triangle = 34×Side2\frac{\sqrt{3}}{4} × Side^2

= 34×12×12\frac{\sqrt{3}}{4} × 12 × 12 = 363cm236\sqrt{3} cm^2

Circumradius = R=abc4×areaoftriangleR = \frac{abc}{4 × area of triangle}

= R=12×12×124×3R = \frac{12 × 12 × 12}{4 × \sqrt{3}}

= R=123R = \frac{12}{\sqrt{3}}

= 43cm4\sqrt{3} cm

The correct option is (B): 43\sqrt{3} cm