Solveeit Logo

Question

Mathematics Question on circle

The radius of the circle with the polar equation r28r(3cosθ+sinθ)+15=0r^2 - 8r( \sqrt{3} \, \cos \, \theta + \sin \, \theta) + 15 = 0 is

A

8

B

7

C

6

D

5

Answer

7

Explanation

Solution

Given polar equation of circle is
r28(3cosθ+sinθ)+15=0r^{2}-8(\sqrt{3} \cos \theta+\sin \theta)+15=0
or r28(3rcosθ+rsinθ)+15=0r^{2}-8(\sqrt{3} r \cos \theta +r \sin \theta)+15=0
where rcosθ=xr \cos \theta=x and y=rsinθy=r \sin \theta
It can be rewritten in cartesian form
x2+y283x+y+15=0x^{2}+y^{2}-8 \sqrt{3} x+y+15=0
x2+y283x8y+15=0\Rightarrow x ^{2}+ y ^{2}-8 \sqrt{3} x -8 y +15=0
Now, radius =432+4215=\sqrt{4 \sqrt{3}^{2}+4^{2}-15}
=48+1615=7=\sqrt{48+16-15}=7