Solveeit Logo

Question

Question: The radius of the circle passing through the centre of the in-circle of DABC and through the end poi...

The radius of the circle passing through the centre of the in-circle of DABC and through the end points of BC is given by-

A

cosA

B

a2\frac { \mathrm { a } } { 2 } sec

C

a2\frac { \mathrm { a } } { 2 } sin A

D

a sec

Answer

a2\frac { \mathrm { a } } { 2 } sec

Explanation

Solution

Đ BOC = 2p – (p + A)

[BIC=πB+C2=π2+A2]\left[ \because \angle \mathrm { BIC } = \pi - \frac { \mathrm { B } + \mathrm { C } } { 2 } = \frac { \pi } { 2 } + \frac { \mathrm { A } } { 2 } \right]

= p – A

Q a2 = R2 + R2 – 2R2 cos (p – A)

\ a2 = 2R2(1+ cos A)

R = = sec