Solveeit Logo

Question

Question: The radius of the circle in which the sphere \(x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 2 x - 2 y - 4 z ...

The radius of the circle in which the sphere

x2+y2+z2+2x2y4z19=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 2 x - 2 y - 4 z - 19 = 0is cut by the plane

x+2y+2z+7=0x + 2 y + 2 z + 7 = 0is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

For sphere x2+y2+z2+2x2y4z19=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 2 x - 2 y - 4 z - 19 = 0 ,

Centre O is (–1, 1, 2) and radius =1+1+4+19=5= \sqrt { 1 + 1 + 4 + 19 } = 5,

Now, OL = length of perpendicular from O to plane

x+2y+2z+7=0x + 2 y + 2 z + 7 = 0 is

=1+2+4+71+4+4=123=4= \frac { - 1 + 2 + 4 + 7 } { \sqrt { 1 + 4 + 4 } } = \frac { 12 } { 3 } = 4 , i.e. OL=4O L = 4 .

In OLB,LB=OB2OL2=2516=3\triangle O L B , L B = \sqrt { O B ^ { 2 } - O L ^ { 2 } } = \sqrt { 25 - 16 } = 3