Solveeit Logo

Question

Question: The radius of circumcircle of triangle PRS with three sides \[2\sqrt{3},6\sqrt{2},10\] is A. \[5\...

The radius of circumcircle of triangle PRS with three sides 23,62,102\sqrt{3},6\sqrt{2},10 is
A. 55
B. 333\sqrt{3}
C. 323\sqrt{2}
D. 232\sqrt{3}

Explanation

Solution

Hint: We have to know the cosine rule in a triangle that is cosP=r2+s2p22rs\cos P=\dfrac{{{r}^{2}}+{{s}^{2}}-{{p}^{2}}}{2rs} and we will get cosP\cos P and then find sinP\sin Pby trigonometric identity that is sin2P+cos2P=1{{\sin }^{2}}P+{{\cos }^{2}}P=1 and then we have to know the sine rule in a triangle that is ΔPRS:psinP=rsinR=ssinS=2R\Delta PRS:\dfrac{p}{\sin P}=\dfrac{r}{\sin R}=\dfrac{s}{\sin S}=2R. By this way we will get the circumradius of the triangle.

Complete step-by-step solution -
__
Given, the sides of triangle PRS are 23,62,102\sqrt{3},6\sqrt{2},10
Hence p= 232\sqrt{3}. . . . . . . . . . . . . . . . . . . . . . . (1)
r= 626\sqrt{2}. . . . . . . . . . . . . . . . . . . . . . . .(2)
s= 1010. . . . . . . . . . . . . . . . . . . . . . . . . (3)
we know that in a triangle according to cosine rule cosP=r2+s2p22rs\cos P=\dfrac{{{r}^{2}}+{{s}^{2}}-{{p}^{2}}}{2rs}
cosP=102+(62)2(23)22×10×62\cos P=\dfrac{{{10}^{2}}+{{\left( 6\sqrt{2} \right)}^{2}}-{{\left( 2\sqrt{3} \right)}^{2}}}{2\times 10\times 6\sqrt{2}}
cosP=100+72121202\cos P=\dfrac{100+72-12}{120\sqrt{2}}
cosP=1601202=432\cos P=\dfrac{160}{120\sqrt{2}}=\dfrac{4}{3\sqrt{2}}
Rationalizing the both numerator and denominator by multiplying with 2\sqrt{2} we will get,
cosP=432×22=223\cos P=\dfrac{4}{3\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{2\sqrt{2}}{3}. . . . . .. . . . . . . .(4)
We know the trigonometric identity that sin2P+cos2P=1{{\sin }^{2}}P+{{\cos }^{2}}P=1
By substituting the value of cosP\cos P we will get sinP\sin P
sinP=189=19\sin P=\sqrt{1-\dfrac{8}{9}}=\sqrt{\dfrac{1}{9}}
sinP=13\sin P=\dfrac{1}{3}. . . . . . . . .. . . .(5)
According to sine rule we know that in a triangle, ΔPRS:psinP=rsinR=ssinS=2R\Delta PRS:\dfrac{p}{\sin P}=\dfrac{r}{\sin R}=\dfrac{s}{\sin S}=2R
We can take the term psinP=2R\dfrac{p}{\sin P}=2R
By substituting the values of p and sinP\sin P we will get the circumradius of triangle PRS as follows
2313=2R\dfrac{2\sqrt{3}}{\dfrac{1}{3}}=2R
2R=632R=6\sqrt{3}
R=33R=3\sqrt{3}
So, the correct option is option (B).

Note: In the above we find cosP\cos P by using cosine rule it is not mandatory to find only cosP\cos P we can find cosR\cos R or else cosS\cos S and then using the trigonometric identity find sinR\sin R and sinS\sin S, by applying the sine rule we can find the circumradius of triangle PRS.