Solveeit Logo

Question

Mathematics Question on Differential equations

The radius of a right circular cylinder increases at the rate of 0.1cm/min0.1\, cm/min, and the height decreases at the rate of 0.2cm/min0.2\, cm/min. The rate of change of the volume of the cylinder, in cm3/mincm^3/min, when the radius is 2cm2\, cm and the height is 3cm3\, cm is

A

2π-2\pi

B

8π5-\frac{8\pi}{5}

C

3π5-\frac{3\pi}{5}

D

2π5\frac{2\pi}{5}

Answer

2π5\frac{2\pi}{5}

Explanation

Solution

Given V=π2h.V = \pi^{2}h.
Differentiating both sides, we get
dVdt=π(r2dhdt+2rdrdrh)πr(rdhdt+2hdrdt)\frac{dV}{dt}=\pi\left(r^{2} \frac{dh}{dt}+2r \frac{dr}{dr} h\right)-\pi r\left(r \frac{dh}{dt}+2h \frac{dr}{dt}\right)
drdt=110\frac{dr}{dt}=\frac{1}{10} and dhdt=210\frac{dh}{dt}=-\frac{2}{10}
dVdt=πr(r(210)+2h(110))=πr5(r+h)\frac{dV}{dt}=\pi r\left(r\left(-\frac{2}{10}\right)+2h\left(\frac{1}{10}\right)\right)=\frac{\pi r}{5}\left(-r+h\right)
Thus, when r=2r = 2 and h=3h = 3,
dVdt=π(2)5(2+3)=2π5.\frac{dV}{dt}=\frac{\pi\left(2\right)}{5}\left(-2+3\right)=\frac{2\pi}{5}.