Solveeit Logo

Question

Physics Question on Gravitation

The radius of a planet is twice the radius of earth. Both have almost equal average mass-densities. vPv_P and vEv_E are escape velocities of the planet and the earth, respectively, then

A

vp=1.5vEv_p = 1.5 \,v_E

B

vp=2vEv_p = 2 \,v_E

C

vE=3vpv_E = 3\, v_p

D

VE=1.5VpV_E = 1.5\, V_p

Answer

vp=2vEv_p = 2 \,v_E

Explanation

Solution

Here, RP=2RER_P = 2 R_E , ρE=ρP\rho_E = \rho_P
Escape velocity of the earth,
VE=2GMERE=2GRE(43πRE3ρE)V_E = \sqrt \frac {2GM_E}{R_E}= {\sqrt {\frac {2G}{R_E} \bigg(\frac {4}{3} \pi R_E^3\rho_E\bigg)}} =RE83πGρE...(i)= R_E \sqrt {\frac {8}{3} \pi G\rho_E }\, \, \, ...(i)
Escape velocity of the planet
VP=2GMPRP=2GRP(43πRP3ρP)V_P = \sqrt \frac{2GM_P}{R_P} = {\sqrt {\frac {2G}{R_P} \bigg(\frac {4}{3} \pi R_P^3\rho_P\bigg)}} =RP83πGρP(ii)=R_{P}\sqrt{\frac{8}{3}\pi G\rho_{P}}\ldots\left(ii\right)
Divide (i) by (ii), we get
VEVP=RERPρEρP\frac {V_E}{V_P} = \frac {R_E}{R_P} \sqrt \frac {\rho_E}{\rho_P}
VEVP=RE2REρEρE=12\frac {V_E}{V_P} = \frac {R_E}{2R_E} \sqrt \frac {\rho_E}{\rho_E} = \frac {1}{2}
or VP=2VEV_P = 2V_E