Solveeit Logo

Question

Physics Question on Nuclei

The radioactivity of a sample is x at time t1t_1 and is y at time t2t_2. If the mean life of the specimen is τ\tau, the number of atoms that have disintegrated in the time interval (t2t1)(t_2 - t_1) is

A

x - y

B

(xy)/τ(x - y) / \tau

C

(xy)τ(x - y) \tau

D

xt1yt2x t_1 - y t_2

Answer

(xy)τ(x - y) \tau

Explanation

Solution

Activity dNdt=λN \frac{dN}{dt} = - \lambda N
x=λNt1,y=λNt2\therefore x = - \lambda N_{t_1}, y = - \lambda N_{t_2}
Nt1=xλ,Nt2=yλ\Rightarrow N_{t_1} = - \frac{x}{\lambda} , N_{t_2} = - \frac{y}{\lambda}
The number of atoms disintegrated in time interval
Nt2Nt1=yλ(xλ)\Rightarrow N_{t_2} - N_{t_1} = - \frac{y}{\lambda} - \big(-\frac{x}{\lambda}\big)
=xyλ=(xy)τ= \frac{x - y}{\lambda} = (x - y) \tau