Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The radioactivity of a sample is R1{{R}_{1}} at a time T1{{T}_{1}} and R2{{R}_{2}} at times T2{{T}_{2}} . the half-life of the specimen is TT, the number of atoms that have disintegrated at the time (T2T1)({{T}_{2}}-{{T}_{1}}) is proportional to

A

R1T1R2T2{{R}_{1}}{{T}_{1}}-{{R}_{2}}{{T}_{2}}

B

R1R2{{R}_{1}}-{{R}_{2}}

C

R1R2T\frac{{{R}_{1}}-{{R}_{2}}}{T}

D

(R1R2)T({{R}_{1}}-{{R}_{2}})T

Answer

(R1R2)T({{R}_{1}}-{{R}_{2}})T

Explanation

Solution

R1=N1λR_{1}=N_{1} \lambda and R2=N2λR_{2}=N_{2} \lambda Also T=loge2λT=\frac{\log _{e} 2}{\lambda} Or λ=loge2T\lambda=\frac{\log _{e} 2}{T} R1R2=(N1N2)λ\therefore R_{1}-R_{2}=\left(N_{1}-N_{2}\right) \lambda =(N1N2)loge2T=\left(N_{1}-N_{2}\right) \frac{\log _{e} 2}{T} (N1N2)=(R1R2)Tloge2\therefore\left(N_{1}-N_{2}\right)=\frac{\left(R_{1}-R_{2}\right) T}{\log _{e} 2} ie, (N1N2)(R1R2)T\left(N_{1}-N_{2}\right) \propto\left(R_{1}-R_{2}\right) T