Solveeit Logo

Question

Question: The radii of two soap bubbles are R<sub>1</sub> and R<sub>2</sub> respectively. The ratio of masses ...

The radii of two soap bubbles are R1 and R2 respectively. The ratio of masses of air in them will be

A

R13R23\frac{R_{1}^{3}}{R_{2}^{3}}

B

R23R13\frac{R_{2}^{3}}{R_{1}^{3}}

C

(P+4TR1P+4TR2)R13R23\left( \frac{\mathbf{P +}\frac{\mathbf{4T}}{\mathbf{R}_{\mathbf{1}}}}{\mathbf{P +}\frac{\mathbf{4T}}{\mathbf{R}_{\mathbf{2}}}} \right)\frac{\mathbf{R}_{\mathbf{1}}^{\mathbf{3}}}{\mathbf{R}_{\mathbf{2}}^{\mathbf{3}}}

D

(P+4TR2P+4TR1)R23R13\left( \frac{P + \frac{4T}{R_{2}}}{P + \frac{4T}{R_{1}}} \right)\frac{R_{2}^{3}}{R_{1}^{3}}

Answer

(P+4TR1P+4TR2)R13R23\left( \frac{\mathbf{P +}\frac{\mathbf{4T}}{\mathbf{R}_{\mathbf{1}}}}{\mathbf{P +}\frac{\mathbf{4T}}{\mathbf{R}_{\mathbf{2}}}} \right)\frac{\mathbf{R}_{\mathbf{1}}^{\mathbf{3}}}{\mathbf{R}_{\mathbf{2}}^{\mathbf{3}}}

Explanation

Solution

From PV = μRT.

At a given temperature, the ratio masses of air μ1μ2=P1V1P2V2=(P+4TR1)(P+4TR2)43πR1343πR23=(P+4TR1)(P+4TR2)R13R23.\frac{\mu_{1}}{\mu_{2}} = \frac{P_{1}V_{1}}{P_{2}V_{2}} = \frac{\left( P + \frac{4T}{R_{1}} \right)}{\left( P + \frac{4T}{R_{2}} \right)}\frac{\frac{4}{3}\pi R_{1}^{3}}{\frac{4}{3}\pi R_{2}^{3}} = \frac{\left( P + \frac{4T}{R_{1}} \right)}{\left( P + \frac{4T}{R_{2}} \right)}\frac{R_{1}^{3}}{R_{2}^{3}}.