Solveeit Logo

Question

Question: The radii of two planets are respectively R<sub>1</sub>& R<sub>2</sub> and their densities are respe...

The radii of two planets are respectively R1& R2 and their densities are respectively r1&r2. The ratio of the acceleration due to gravity at their surface is –

A

g1 : g2 = : ρ2R22\frac { \rho _ { 2 } } { \mathrm { R } _ { 2 } ^ { 2 } }

B

g1 : g2 = R1R2 : r1r2

C

g1 : g2 = R1r2 : R2r1

D

g1 : g2 = R1r1 : R2, r2

Answer

g1 : g2 = R1r1 : R2, r2

Explanation

Solution

The value of g at surface

g = 43πGRρ\frac { 4 } { 3 } \pi \mathrm { GR } \rho

so, g1 g2\frac { \mathrm { g } _ { 1 } } { \mathrm {~g} _ { 2 } } = 43πGR1ρ143πGR2ρ2\frac { \frac { 4 } { 3 } \pi \mathrm { GR } _ { 1 } \rho _ { 1 } } { \frac { 4 } { 3 } \pi \mathrm { GR } _ { 2 } \rho _ { 2 } } ̃ g1 g2\frac { \mathrm { g } _ { 1 } } { \mathrm {~g} _ { 2 } } =