Solveeit Logo

Question

Question: The radii of two planets are respectively \(R _ { 1 }\) and \(R _ { 2 }\) and their densities are re...

The radii of two planets are respectively R1R _ { 1 } and R2R _ { 2 } and their densities are respectively ρ1\rho _ { 1 } and ρ2\rho _ { 2 }. The ratio of the accelerations due to gravity at their surfaces is

A

g1:g2=ρ1R12:ρ2R22g _ { 1 } : g _ { 2 } = \frac { \rho _ { 1 } } { R _ { 1 } ^ { 2 } } : \frac { \rho _ { 2 } } { R _ { 2 } ^ { 2 } }

B

g1:g2=R1R2:ρ1ρ2g _ { 1 } : g _ { 2 } = R _ { 1 } R _ { 2 } : \rho _ { 1 } \rho _ { 2 }

C

g1:g2=R1ρ2:R2ρ1g _ { 1 } : g _ { 2 } = R _ { 1 } \rho _ { 2 } : R _ { 2 } \rho _ { 1 }

D

g1:g2=R1ρ1:R2ρ2g _ { 1 } : g _ { 2 } = R _ { 1 } \rho _ { 1 } : R _ { 2 } \rho _ { 2 }

Answer

g1:g2=R1ρ1:R2ρ2g _ { 1 } : g _ { 2 } = R _ { 1 } \rho _ { 1 } : R _ { 2 } \rho _ { 2 }

Explanation

Solution

g=43πρGRg = \frac { 4 } { 3 } \pi \rho G R \therefore g1g2=R1ρ1R2ρ2\frac { g _ { 1 } } { g _ { 2 } } = \frac { R _ { 1 } \rho _ { 1 } } { R _ { 2 } \rho _ { 2 } }