Solveeit Logo

Question

Physics Question on Surface tension

The radii of the two columns in a U - tube are r1 and r2. When a liquid of density p (angle of contact is 00{}^\circ ) is filled in it, the level difference of the liquid in the two arms is h. The surface tension of the liquid is: (g = acceleration due to gravity)

A

ρghr1r22(r2r1)\frac{\rho gh{{r}_{1}}{{r}_{2}}}{2({{r}_{2}}-{{r}_{1}})}

B

ρgh(r1r2)r2r1\frac{\rho gh({{r}_{1}}-{{r}_{2}})}{{{r}_{2}}{{r}_{1}}}

C

2(r1r2)ρghr1r2\frac{2({{r}_{1}}-{{r}_{2}})}{\rho gh{{r}_{1}}{{r}_{2}}}

D

ρgh2(r2)r1\frac{\rho gh}{2({{r}_{2}})-{{r}_{1}}}

Answer

ρghr1r22(r2r1)\frac{\rho gh{{r}_{1}}{{r}_{2}}}{2({{r}_{2}}-{{r}_{1}})}

Explanation

Solution

Rise of liquid in the capillary tube is given by h=2Trρgh=\frac{2T}{r\rho g} Suppose, h1{{h}_{1}} is the height in tube of radius r1{{r}_{1}} and h2{{h}_{2}} is the height in tube of radius of r2{{r}_{2}} So, h1=2Tr1ρg{{h}_{1}}=\frac{2T}{{{r}_{1}}\rho g} ?(i) and h2=2Tr2ρg{{h}_{2}}=\frac{2T}{{{r}_{2}}\rho g} ?(ii) Level difference of liquid in the two arms is given by h=h1h2=2Tr1ρg2Tr2ρgh={{h}_{1}}-{{h}_{2}}=\frac{2T}{{{r}_{1}}\rho g}-\frac{2T}{{{r}_{2}}\rho g} \Rightarrow h=2Tρg[1r11r2]h=\frac{2T}{\rho g}\left[ \frac{1}{{{r}_{1}}}-\frac{1}{{{r}_{2}}} \right] \Rightarrow h=2Tρg[r2r1r1r2]h=\frac{2T}{\rho g}\left[ \frac{{{r}_{2}}-{{r}_{1}}}{{{r}_{1}}{{r}_{2}}} \right] Hence, T=hρgr1r22(r2r1)T=\frac{h\rho g{{r}_{1}}{{r}_{2}}}{2({{r}_{2}}-{{r}_{1}})}