Solveeit Logo

Question

Mathematics Question on Circle

The radical centre of the circles x2+y24x6y+5=0x^{2}+y^{2}-4\,x-6 \,y+5=0 x2+y22x4y1=0x^{2}+y^{2}-2\,x-4 \,y-1=0 and x2+y26x2y=0=0x^{2}+y^{2}-6 \,x-2 \,y=0=0 lies on the line

A

x + y - 5 = 0

B

2 x - 4 y + 7 = 0

C

4 x - 6 y + 5 = 0

D

18 x - 12 y + 1 = 0

Answer

18 x - 12 y + 1 = 0

Explanation

Solution

We have,
S1=x2+y24x6y+5=0S_{1}=x^{2}+y^{2}-4 \,x-6 \,y+5=0
S2=x2+y22x4y1=0S_{2}=x^{2}+y^{2}-2 \,x-4 \,y-1=0
S3=x2+y26x2y=0S_{3}=x^{2}+y^{2}-6 \,x-2\,y=0
S1S2=02x+2y6=0x+y3=0(i)S_{1}-S_{2}=0 \Rightarrow 2 \,x+2 \,y-6=0 \Rightarrow x+y-3=0 \ldots (i)
S2S3=04x2y1=0(ii)S_{2}-S_{3}=0 \Rightarrow 4 \,x-2 \,y-1=0 \ldots (ii)
Solving Eqs. (i) and (ii), we get
x=76,y=116x=\frac{7}{6}, y=\frac{11}{6}
(76,116)\left(\frac{7}{6}, \frac{11}{6}\right) satisfies the equations 18x12y+1=018\, x-12\, y+1=0