Solveeit Logo

Question

Question: The quarter disc of radius $R$ (see figure) has a uniform surface charge density $\sigma$. Find ele...

The quarter disc of radius RR (see figure) has a uniform surface charge density σ\sigma.

Find electric potential at a point (O,O,Z)(O, O, Z).

Answer

V = \frac{\sigma}{8\epsilon_0}\left(\sqrt{R^2+Z^2}-Z\right)

Explanation

Solution

Step-by-step Solution

  1. Set Up the Integral:

The quarter disc lies in the first quadrant of the xyxy-plane with uniform surface charge density σ\sigma. In polar coordinates, the disc is described by: r[0,R],θ[0,π2]. r \in [0, R], \quad \theta \in \left[0, \frac{\pi}{2}\right]. An infinitesimal element of area is: dA=rdrdθ. dA = r\,dr\,d\theta.

  1. Potential Contribution:

The potential at (0,0,Z)(0,0,Z) due to an element of charge dQ=σdAdQ = \sigma dA is: dV=14πϵ0dQr2+Z2=14πϵ0σrdrdθr2+Z2. dV = \frac{1}{4\pi\epsilon_0} \frac{dQ}{\sqrt{r^2+Z^2}} = \frac{1}{4\pi\epsilon_0} \frac{\sigma\, r\,dr\,d\theta}{\sqrt{r^2+Z^2}}.

  1. Integrate Over the Quarter Disc:

    V=σ4πϵ00π20Rrr2+Z2  drdθ.V = \frac{\sigma}{4\pi\epsilon_0} \int_0^{\frac{\pi}{2}} \int_0^R \frac{r}{\sqrt{r^2+Z^2}}\; dr\,d\theta.

    First, integrate over θ\theta:

    0π2dθ=π2.\int_0^{\frac{\pi}{2}} d\theta = \frac{\pi}{2}.

    Now, the potential becomes:

    V=σ4πϵ0π20Rrr2+Z2  dr.V = \frac{\sigma}{4\pi\epsilon_0} \cdot \frac{\pi}{2} \int_0^R \frac{r}{\sqrt{r^2+Z^2}}\; dr.
  2. Evaluate the Radial Integral:

    Let:

    I=0Rrr2+Z2  dr.I = \int_0^R \frac{r}{\sqrt{r^2+Z^2}}\; dr.

    Use the substitution:

    u=r2+Z2du=2rdr.u = r^2 + Z^2 \quad \Rightarrow \quad du = 2r\,dr.

    Therefore:

    I=12Z2R2+Z2u1/2  du=12[2u1/2]Z2R2+Z2=R2+Z2Z.I = \frac{1}{2} \int_{Z^2}^{R^2+Z^2} u^{-1/2}\; du = \frac{1}{2} \cdot \left[ 2 u^{1/2} \right]_{Z^2}^{R^2+Z^2} = \sqrt{R^2+Z^2} - Z.
  3. Final Expression:

    Substitute II back:

    V=σ4πϵ0π2(R2+Z2Z).V = \frac{\sigma}{4\pi\epsilon_0} \cdot \frac{\pi}{2} \left(\sqrt{R^2+Z^2} - Z\right).

    Simplify:

    π4π=14and1412=18,\frac{\pi}{4\pi} = \frac{1}{4} \quad \text{and} \quad \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8},

    so:

    V=σ8ϵ0(R2+Z2Z).V = \frac{\sigma}{8\epsilon_0}\left(\sqrt{R^2+Z^2}-Z\right).

Minimal Explanation of the Core Solution:

  • Convert to polar coordinates.
  • Write the potential dV=14πϵ0σrdrdθr2+Z2dV = \frac{1}{4\pi\epsilon_0} \frac{\sigma\, r\,dr\,d\theta}{\sqrt{r^2+Z^2}}.
  • Integrate over θ\theta (factor π/2\pi/2) and over rr using substitution u=r2+Z2u = r^2+Z^2.
  • Final answer: V=σ8ϵ0(R2+Z2Z)V = \frac{\sigma}{8\epsilon_0}\left(\sqrt{R^2+Z^2}-Z\right).