Solveeit Logo

Question

Question: The quadratic equation whose one root is \(x^{2} + 5|x| + 4 = 0\)will be....

The quadratic equation whose one root is x2+5x+4=0x^{2} + 5|x| + 4 = 0will be.

A

log4{log2(x+8x)}=0\log_{4}\{\log_{2}(\sqrt{x + 8} - \sqrt{x})\} = 0

B

{xR:x2=x2}=\{ x \in R:|x - 2| = x^{2}\} =

C

log4(x1)=log2(x3)\log_{4}(x - 1) = \log_{2}(x - 3)

D

x22+x26=0|x - 2|^{2} + |x - 2| - 6 = 0

Answer

{xR:x2=x2}=\{ x \in R:|x - 2| = x^{2}\} =