Solveeit Logo

Question

Question: The quadratic equation whose one root is \(x^{2} - 5|x| + 6 = 0\) will be....

The quadratic equation whose one root is x25x+6=0x^{2} - 5|x| + 6 = 0 will be.

A

(m2+1)x2+2amx+a2b2=0(m^{2} + 1)x^{2} + 2amx + a^{2} - b^{2} = 0

B

a2+b2(m2+1)=0a^{2} + b^{2}(m^{2} + 1) = 0

C

b2+a2(m2+1)=0b^{2} + a^{2}(m^{2} + 1) = 0

D

a2b2(m2+1)=0a^{2} - b^{2}(m^{2} + 1) = 0

Answer

(m2+1)x2+2amx+a2b2=0(m^{2} + 1)x^{2} + 2amx + a^{2} - b^{2} = 0

Explanation

Solution

Let S=ax+(1a)x2 a(0,)S = ax + (1 - a)x^{2}\ \forall a \in (0,\infty) and S=ax+(1a)x2 aRS = ax + (1 - a)x^{2}\ \forall a \in R

Sum of roots S=ax+(1a)x2 a(0,2)S = ax + (1 - a)x^{2}\ \forall a \in (0,2) and product of roots α\alpha

Thus required equation is β\beta.