Solveeit Logo

Question

Question: The proposition \(p \to \neg\left( {p \wedge \neg q} \right)\) is A) Contradiction B) Tautology ...

The proposition p¬(p¬q)p \to \neg\left( {p \wedge \neg q} \right) is
A) Contradiction
B) Tautology
C) Either (A) or (B)
D) Neither (A) nor (B)

Explanation

Solution

The given question can be solved by making use of a truth table.
To make a truth table draw a table with columns p,q,¬q,p¬q,¬(p¬q),p¬(p¬q)p,q,\neg q,p \wedge \neg q,\neg\left( {p \wedge \neg q} \right),p \to \neg\left( {p \wedge \neg q} \right).
Now check whether the last column i.e. p¬(p¬q)p \to \neg\left( {p \wedge \neg q} \right) is a tautology or a contradiction.

Complete step by step solution:
It is asked to find the proposition p¬(p¬q)p \to \neg\left( {p \wedge \neg q} \right) .
So, we have to solve it by constructing the truth table for the above proposition.

pq¬q\neg qp¬qp \wedge \neg q¬(p¬q)\neg\left( {p \wedge \neg q} \right)p¬(p¬q)p \to \neg\left( {p \wedge \neg q} \right)
TTFFTT
TFTTFF
FTFFTT
FFTFTT

Thus, the given proposition p¬(p¬q)p \to \neg\left( {p \wedge \neg q} \right) is neither a tautology nor a contradiction.

So, option (D) is the correct answer.

Note:
A truth table is a table used in logic, i.e. Boolean algebra, which sets out the functional values on each of their functional arguments. In general, a truth table is used to show whether an expression is true for all logical inputs.
A truth table has one column for each input variable and one final column showing all of the possible results of the logical operation that the table represents.