Solveeit Logo

Question

Mathematics Question on Distance of a Point From a Line

The projection of the line segment joining the points (-1, 0, 3) and (2, 5, 1) on the line whose direction ratios are (6, 2, 3) is

A

6

B

7

C

227\frac{22}{7}

D

3

Answer

227\frac{22}{7}

Explanation

Solution

Direction cosines of the line are \frac{6}{\sqrt{\left\\{\left(6\right)^{2} + \left(2\right)^{2} + \left(3\right)^{2}\right\\} }} , \frac{2}{\sqrt{\left\\{\left(6\right)^{2} + \left(2\right)^{2} + \left(3\right)^{2}\right\\}}} , \frac{3}{\sqrt{\left\\{\left(6\right)^{2} + \left(2\right)^{2} +\left(3\right)^{2}\right\\}}} i .e., \frac{6}{7}, \frac{2}{7} , \frac{3}{7} \therefore Projection of the line segment joining the points on the given line = 67(2+1)+27(50)+37(13)=227.\frac{6}{7} \left(2+1\right) + \frac{2}{7}\left(5-0\right) + \frac{3}{7}\left(1-3\right)= \frac{22}{7}. [l(x2x1)+m(y2y1)+n(z2z1)]\left[l\left(x_{2 } - x_{1}\right) + m\left(y_{2} - y_{1}\right) + n \left(z_{2} - z_{1}\right)\right]