Solveeit Logo

Question

Question: The projection of a line segment on \[x\], \[y\], \[z\] axes are 12, 4, 3. The length and the direct...

The projection of a line segment on xx, yy, zz axes are 12, 4, 3. The length and the direction cosines of the line segments are
A.13, <12/13 < 12/13, 4/134/13, 3/13>3/13 >
B.19, <12/19 < 12/19, 4/194/19 , 19 >>
C.11, <12/11 < 12/11, 4/114/11, 3/11>3/11 >
D.None of these

Explanation

Solution

Here we need to find the length and the direction cosines of the line segments. First, we will write the line segment in the vector form and then we will use the given data to find the value of the vector. From there, we will find the value of length of length of the line segments using the formula and then we will find the value of direction cosines of the line segment.

Complete step-by-step answer:
Let the vector form of the line segment be represented as
a=a1i+a2j+a3k\overrightarrow a = {a_1}\overrightarrow {i} + {a_2}\overrightarrow j + {a_3}\overrightarrow k ……. (1)\left( 1 \right)
Here vector along the coordinate axes are i\overrightarrow i , j\overline j and k\overrightarrow k
Given that projection of the given vector i.e. a\overrightarrow a on x-axis is 12, that with y-axis is 4 and that with z-axis is 3 i.e.
a.i=12\Rightarrow \overrightarrow a .\overrightarrow i = 12
Now, we will find the dot product of a\overrightarrow a and i\overrightarrow i from equation 1.
ai=a1ii+a2ji+a3ki\overrightarrow a \cdot \overrightarrow i = {a_1}\overrightarrow {i} \cdot \overrightarrow i + {a_2}\overrightarrow j \cdot \overrightarrow i + {a_3}\overrightarrow k \cdot \overrightarrow i
We know the value of dot products ji\overrightarrow j \cdot \overrightarrow {i} and ki\overrightarrow k \cdot \overrightarrow i is equal to zero and the value of dot product ii\overrightarrow i \cdot \overrightarrow i is equal to 1.
Now, we will substitute the values here.
ai=a1=12\Rightarrow \overrightarrow a \cdot \overrightarrow i = {a_1} = 12
It is also given that
aj=4\overrightarrow a \cdot \overrightarrow j = 4
Now, we will find the dot product of a\overrightarrow a and j\overrightarrow j from equation 1.
aj=a1ij+a2jj+a3kj\overrightarrow a \cdot \overrightarrow j = {a_1}\overrightarrow {i} \cdot \overrightarrow j + {a_2}\overrightarrow j \cdot \overrightarrow j + {a_3}\overrightarrow k \cdot \overrightarrow j
We know the value of dot products ij\overrightarrow {i} \cdot \overrightarrow j and kj\overrightarrow k \cdot \overrightarrow j is equal to zero and the value of dot product jj\overrightarrow j \cdot \overrightarrow j is equal to 1.
Now, we will substitute the values here.
aj=a2=4\Rightarrow \overrightarrow a \cdot \overrightarrow j = {a_2} = 4
It is also given that
ak=3\overrightarrow a \cdot \overrightarrow k = 3
Now, we will find the dot product of a\overrightarrow a and k\overrightarrow k from equation 1.
ak=a1ik+a2jk+a3kk\Rightarrow \overrightarrow a \cdot \overrightarrow k = {a_1}\overrightarrow {i} \cdot \overrightarrow k + {a_2}\overrightarrow j \cdot \overrightarrow k + {a_3}\overrightarrow k \cdot \overrightarrow k
We know the value of dot products ik\overrightarrow {i} \cdot \overrightarrow k and jk\overrightarrow j \cdot \overrightarrow k is equal to zero and the value of dot product kk\overrightarrow k \cdot \overrightarrow k is equal to 1.
Now, we will substitute the values here.
ak=a3=3\Rightarrow \overrightarrow a \cdot \overrightarrow k = {a_3} = 3
Therefore,
a=12i+4j+3k\overrightarrow a = 12\overrightarrow {i} + 4\overrightarrow j + 3\overrightarrow k
Now, we will find the length of the line segment by find the magnitude of the given vector a\overrightarrow a .
a=a12+a32+a32\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_3}^2 + {a_3}^2}
Now, we will substitute the values here.
a=122+42+32\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{{12}^2} + {4^2} + {3^2}}
On further simplification, we get
a=144+16+9\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {144 + 16 + 9}
On adding the numbers, we get
a=169\Rightarrow \left| {\overrightarrow a } \right| = \sqrt {169}
Putting the value of square root of 169, we get
a=13\Rightarrow \left| {\overrightarrow a } \right| = 13
Thus, the length of the line segment is equal to 13.
Now, we will find the direction cosines of the vector.
Let the directional cosines of vector aa be cosαcos\alpha ,cosβcos\beta and cosγcos\gamma .
We have
cosα=aia\Rightarrow cos\alpha = \dfrac{{\overrightarrow a \cdot \overrightarrow i }}{{\mid \overrightarrow a \mid }}
On substituting the values of vectors and their magnitude here, we get
cosα=1213\Rightarrow cos\alpha = \dfrac{{12}}{{13}}
We have
cosβ=aja\Rightarrow cos\beta = \dfrac{{\overrightarrow a \cdot \overrightarrow j }}{{\mid \overrightarrow a \mid }}
On substituting the values of vectors and their magnitude here, we get
cosβ=413\Rightarrow cos\beta = \dfrac{{4}}{{13}}
We have
cosγ=aka\Rightarrow cos\gamma = \dfrac{{\overrightarrow a \cdot \overrightarrow k }}{{\mid \overrightarrow a \mid }}
On substituting the values of vectors and their magnitude here, we get
cosγ=313\Rightarrow cos\gamma = \dfrac{{3}}{{13}}
Thus, the direction cosines of the vector aa are 1213\dfrac{{12}}{{13}}, 413\dfrac{4}{{13}} and 313\dfrac{3}{{13}}
Hence, the correct option is option A.

Note: Here, we have obtained the direction ratios of the vector. The directional cosines of a vector are defined as the cosines of the angle that a vector makes with the three coordinate axes. So, we can say direction cosine is a set of information that represents the direction of a vector. A vector has both magnitude and direction.