Question
Question: The product of matrices \(A = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\theta }&{\cos \theta ...
The product of matrices A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]and $B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]isnullmatrixif\theta - \phi = ?
a.{\text{ }}2n\pi ,n \in Z \\
b.{\text{ }}n\dfrac{\pi }{2},n \in Z \\
c.{\text{ }}\left( {2n + 1} \right)\dfrac{\pi }{2},n \in Z \\
d.{\text{ }}n\pi ,n \in Z \\
$
Solution
Hint- Null matrix is a matrix if all the elements of the matrix are zero. Multiplication of two matrices is given as a null matrix so the value of multiplication will be equal to Zero matrix.
Given matrix are
A = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right], B = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]
Now find out the product of matrices i.e.(AB)
\left( {AB} \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\\
{\cos \theta \sin \theta }&{{{\sin }^2}\theta }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\phi }&{\cos \phi \sin \phi } \\\
{\cos \phi \sin \phi }&{{{\sin }^2}\phi }
\end{array}} \right]
Now apply the matrix multiplication rule, both matrices have 2 rows and 2 columns so the multiplication of these two matrices also have two rows and two columns.