Solveeit Logo

Question

Question: The product of all values of \( x \) satisfying the equation \( {\sin ^{ - 1}}\cos \left( {\dfrac{{2...

The product of all values of xx satisfying the equation {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\\} + \dfrac{\pi }{2} is
(A) 99
(B) 9- 9
(C) 3- 3
(D) 1- 1

Explanation

Solution

Hint : This type of equation will be solved by the use of the basic concept of inverse trigonometric and also angle property of trigonometric.

Complete step-by-step answer :
{\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\\} + \dfrac{\pi }{2} . . . . (given)
We have to find the product of real value of xx which satisfies the equation.
So, the equation can be written as
\Rightarrow {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\\} + \dfrac{\pi }{2} . . . . By (x=x)\left( {\left| x \right| = x} \right)
By changing cos\cos function to sin\sin function in left hand side of the above equation we get,
\Rightarrow {\sin ^{ - 1}}\sin \left[ {\dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x4}}{{{x^2} + 5x + 3}}} \right)} \right] = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\\} + \dfrac{\pi }{2} . . . . cosθ=sin(π2θ)\cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right)
Applying the inverse trigonometric property in the both side we get,
π2(2x2+10x+4x2+5x+3)=218x9x+π2\dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \dfrac{{2 - 18x}}{{9x}} + \dfrac{\pi }{2}
On simplifying the above equation, we get,
2x2+10x+4x2+5x+3=218x9x- \dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}} = \dfrac{{2 - 18x}}{{9x}}
On cross multiplying the above equation we get,
18x390x236x=2x2+10x+618x390x54x- 18{x^3} - 90{x^2} - 36x = 2{x^2} + 10x + 6 - 18{x^3} - 90x - 54x
By rearranging above equation we get,
2x28x+6=0\Rightarrow 2{x^2} - 8x + 6 = 0
Now, factorize the above equation to find the value of xx
(x1)(x3)=0\Rightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0
Since, there are two values of xx
x=1x = 1
x=3x = 3
Therefore, the product of two real roots =3×1=3= 3 \times 1 = 3
Hence the product of the real roots which satisfies the given equation is 33 .
Therefore from the above explanation the correct option is [] 33 .

Note : In this question we use inverse trigonometric [cot.cat1(θ)=θsin.sin1(θ)]\left[ {\cot .ca{t^{ - 1}}\left( \theta \right) = \theta \sin .{{\sin }^{ - 1}}\left( \theta \right)} \right]
Also used cosθ=sin[π2θ]\cos \theta = \sin \left[ {\dfrac{\pi }{2} - \theta } \right] , we must be careful on this.