Question
Question: The product of all values of \( x \) satisfying the equation \( {\sin ^{ - 1}}\cos \left( {\dfrac{{2...
The product of all values of x satisfying the equation {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\\} + \dfrac{\pi }{2} is
(A) 9
(B) −9
(C) −3
(D) −1
Solution
Hint : This type of equation will be solved by the use of the basic concept of inverse trigonometric and also angle property of trigonometric.
Complete step-by-step answer :
{\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10\left| x \right| + 4}}{{{x^2} + 5\left| x \right| + 3}}} \right) = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18\left| x \right|}}{{9\left| x \right|}}} \right)} \right\\} + \dfrac{\pi }{2} . . . . (given)
We have to find the product of real value of x which satisfies the equation.
So, the equation can be written as
\Rightarrow {\sin ^{ - 1}}\cos \left( {\dfrac{{2{x^2} + 10x + 4}}{{{x^2} + 5x + 3}}} \right) = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\\} + \dfrac{\pi }{2} . . . . By (∣x∣=x)
By changing cos function to sin function in left hand side of the above equation we get,
\Rightarrow {\sin ^{ - 1}}\sin \left[ {\dfrac{\pi }{2} - \left( {\dfrac{{2{x^2} + 10x4}}{{{x^2} + 5x + 3}}} \right)} \right] = \cot \left\\{ {{{\cot }^{ - 1}}\left( {\dfrac{{2 - 18x}}{{9x}}} \right)} \right\\} + \dfrac{\pi }{2} . . . . cosθ=sin(2π−θ)
Applying the inverse trigonometric property in the both side we get,
2π−(x2+5x+32x2+10x+4)=9x2−18x+2π
On simplifying the above equation, we get,
−x2+5x+32x2+10x+4=9x2−18x
On cross multiplying the above equation we get,
−18x3−90x2−36x=2x2+10x+6−18x3−90x−54x
By rearranging above equation we get,
⇒2x2−8x+6=0
Now, factorize the above equation to find the value of x
⇒(x−1)(x−3)=0
Since, there are two values of x
x=1
x=3
Therefore, the product of two real roots =3×1=3
Hence the product of the real roots which satisfies the given equation is 3 .
Therefore from the above explanation the correct option is [] 3 .
Note : In this question we use inverse trigonometric [cot.cat−1(θ)=θsin.sin−1(θ)]
Also used cosθ=sin[2π−θ] , we must be careful on this.