Solveeit Logo

Question

Mathematics Question on Quadratic Equations

The product of all values of (cosα+isinα)3/5(\cos \alpha + i \sin \alpha)^{3/5} is equal to

A

1

B

cosα+isinα\cos \alpha + i \sin \alpha

C

cos3α+isin3α\cos 3 \alpha + i \sin 3 \alpha

D

cos5α+isin5α\cos 5 \alpha + i \sin 5 \alpha

Answer

cos3α+isin3α\cos 3 \alpha + i \sin 3 \alpha

Explanation

Solution

(cosα+isinα)35=(cos3α+isin3α)15\left(\cos\alpha +i \sin\alpha\right)^{\frac{3}{5}} = \left(\cos3\alpha+ i \sin3\alpha\right)^{\frac{1}{5}}
=[cos(2kπ+3α)+isin(2kπ+3α)]15=\left[\cos\left(2k\pi+3\alpha\right)+i \sin\left(2k\pi+3\alpha\right)\right]^{\frac{1}{5}}
=[cos(2kπ+3α5)+isin(2kπ+3α5)],= \left[\cos\left(\frac{2k\pi+3\alpha}{5}\right) + i \sin\left(\frac{2k\pi+3\alpha}{5}\right)\right] ,
where k = 0, 1,2,3,4
Product of all values.
=(cos3α5+isin3α5).(cos(2π+3α5)+isin(2π+3α5)).(cos4π+3α5+isin4π+3α5).(cos6π+3α5+isin6π+3α5).(cos(8π+3α5)+isin(8π+3α5))=\left(\cos \frac{3\alpha}{5} + i \sin \frac{3\alpha}{5}\right). \left(\cos\left(\frac{2\pi+3\alpha}{5}\right) +i \sin\left(\frac{2\pi+3\alpha}{5}\right)\right) . \left(\cos \frac{4\pi+3\alpha}{5}+ i \sin \frac{4\pi+3\alpha}{5}\right) . \left(\cos \frac{6\pi+3\alpha}{5} +i\sin \frac{6\pi+3\alpha}{5}\right) . \left(\cos\left(\frac{8\pi+3\alpha}{5}\right) +i \sin\left(\frac{8\pi +3\alpha}{5}\right)\right)
=cos[3α5+2π+3α5+4π+3α5+6π+3α5+8π+3α5]+isin[3α5+2π+3α5+4π+3α5+6π+3α5+8π+3α5]=\cos\left[\frac{3\alpha}{5} + \frac{2\pi+3\alpha}{5} + \frac{4\pi+3\alpha}{5} + \frac{6\pi+3\alpha}{5} + \frac{8\pi+3\alpha}{5}\right]+i \sin\left[\frac{3\alpha}{5} +\frac{2\pi+3\alpha}{5} + \frac{4\pi+3\alpha}{5} + \frac{6\pi+3\alpha}{5} + \frac{8\pi+3\alpha}{5}\right]
=cos[52(2.3α5+(51).(2π5))]+isin[52(2.3α5+(51)..(2π5))]= \cos\left[\frac{5}{2} \left(2. \frac{3\alpha}{5} + \left(5-1\right). \left(\frac{2\pi}{5}\right)\right) \right] +i \sin\left[\frac{5}{2} \left(2. \frac{3\alpha}{5} +\left(5-1\right)..\left(\frac{2\pi}{5}\right)\right)\right]
=cos[52.(6α5+(8π5))]+isin[52(6α5+8π5)]=\cos\left[\frac{5}{2} . \left(\frac{6\alpha}{5} + \left(\frac{8\pi}{5}\right)\right)\right] + i \sin\left[\frac{5}{2} \left(\frac{6\alpha}{5} + \frac{8\pi}{5}\right)\right]
=cos(3α+4π)+isin(3α+4π)= \cos (3\alpha + 4 \pi) + i \sin(3 \alpha + 4\pi)
=cos(4π+3α)+isin(4π+3α)= \cos (4\pi + 3\alpha ) + i \sin (4\pi + 3\alpha )
=cos3α+isin3α= \cos 3 \alpha + i \sin 3 \alpha