Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

The product of all positive real values of xx satisfying the equation x(16(log5x)368log5x)=516x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16} is _____.

Answer

Taking log5 on both sides
(16(log5x)368(log5x))(log5x)=16(16(\log_5x)^3 -68(\log_5x))(\log_5x) = -16
Let ( log5x)=t
16t4 - 68t2 + 16 = 0
4t4 + 16t2 - t2+4=0
(4t2 - 1)(t2-4) = 0
t=±12 or±2t=±\frac{1}{2}\ or ±2
So log5x = ±12 or±2±\frac{1}{2}\ or ±2
x=512,512,52,52⇒ x=5^{\frac{1}{2}} , 5^{-\frac{1}{2}} , 5^2, 5^{-2}
\therefore Product = (5)1212+22(5)^{\frac{1}{2}-\frac{1}{2} +2-2}
=50=1= 5^0 = 1

So, the correct answer is 1.