Solveeit Logo

Question

Mathematics Question on Probability

The probability that atleast one of the events AA and BB occurs is 0.50.5 . If AA and BB occur simultaneously with probability 0.2,0.2, then P(Ac)+P(Bc)P({{A}^{c}})+P({{B}^{c}}) is equal to

A

1.01.0

B

1.11.1

C

0.70.7

D

1.31.3

Answer

1.31.3

Explanation

Solution

Given, P(AB)=0.5P(A\cup B)=0.5 and P(AB)=0.2P(A\cap B)=0.2
\therefore P(Ac)+P(Bc)=1P(A)+1P(B)P({{A}^{c}})+P({{B}^{c}})=1-P(A)+1-P(B)
=2P(A)+P(B)=2-\\{P\,(A)+P(B)\\} ..(i)
\because P(AB)=P(A)+P(B)P(AB)P(A\cup B)=P(A)+P(B)-P(A\cap B)
\therefore 0.5=P(A)+P(B)0.20.5=P(A)+P(B)-0.2
\Rightarrow P(A)+P(B)=0.7P(A)+P(B)=0.7
\therefore From E (i), P(Ac)+P(Bc)=20.7P({{A}^{c}})+P({{B}^{c}})=2-0.7
=1.3=1.3