Solveeit Logo

Question

Question: The probability that at least one of the events A & B occurs is \(\frac { 3 } { 5 }\). If A & B occu...

The probability that at least one of the events A & B occurs is 35\frac { 3 } { 5 }. If A & B occur simultaneously with probability 15\frac { 1 } { 5 }

then P(A\overline { \mathrm { A } }) + P( B\overline { \mathrm { B } } ) =

A

25\frac { 2 } { 5 }

B

45\frac { 4 } { 5 }

C

65\frac { 6 } { 5 }

D

None

Answer

65\frac { 6 } { 5 }

Explanation

Solution

P (A Č B) = 3/5; P(1) + P (2) = 35\frac { 3 } { 5 } + 15\frac { 1 } { 5 } = 45\frac { 4 } { 5 } P (A Ē B)

= 15\frac { 1 } { 5 }; P ( A\overline { \mathrm { A } } ) + P( B\overline { \mathrm { B } } ) = 2452 - \frac { 4 } { 5 } = 65\frac { 6 } { 5 }