Solveeit Logo

Question

Question: The probability that at least one of A and B occurs is 0.6. If A and B occur simultaneously with pro...

The probability that at least one of A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, then P(A)+P(B)=P \left( A ^ { \prime } \right) + P \left( B ^ { \prime } \right) =

A

0.9

B

1.15

C

1.1

D

1.2

Answer

1.1

Explanation

Solution

1P(AB)=0.61 - P \left( A ^ { \prime } \cap B ^ { \prime } \right) = 0.6 P(AB)=0.3P ( A \cap B ) = 0.3 then

P(AB)=P(A)+P(B)P(AB)P \left( A ^ { \prime } \cup B ^ { \prime } \right) = P \left( A ^ { \prime } \right) + P \left( B ^ { \prime } \right) - P \left( A ^ { \prime } \cap B ^ { \prime } \right)

1P(AB)=P(A)+P(B)0.41 - P ( A \cap B ) = P \left( A ^ { \prime } \right) + P \left( B ^ { \prime } \right) - 0.4

P(A)+P(B)=0.7+0.4=1.1P \left( A ^ { \prime } \right) + P \left( B ^ { \prime } \right) = 0.7 + 0.4 = 1.1 .